6.
Noriega G
. Restricted, Repetitive, and Stereotypical Patterns of Behavior in Autism-an fMRI Perspective. IEEE Trans Neural Syst Rehabil Eng. 2019; 27(6):1139-1148.
DOI: 10.1109/TNSRE.2019.2912416.
View
7.
Wan Z, Cheng W, Li M, Zhu R, Duan W
. GDNet-EEG: An attention-aware deep neural network based on group depth-wise convolution for SSVEP stimulation frequency recognition. Front Neurosci. 2023; 17:1160040.
PMC: 10133471.
DOI: 10.3389/fnins.2023.1160040.
View
8.
Wen G, Cao P, Bao H, Yang W, Zheng T, Zaiane O
. MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis. Comput Biol Med. 2022; 142:105239.
DOI: 10.1016/j.compbiomed.2022.105239.
View
9.
Wan Z, Liu S, Ding F, Li M, Srivastava G, Yu K
. C2BNet: A Deep Learning Architecture with Coupled Composite Backbone for Parasitic EGG Detection in Microscopic Images. IEEE J Biomed Health Inform. 2023; PP.
DOI: 10.1109/JBHI.2023.3318604.
View
10.
Bi X, Wang Y, Shu Q, Sun Q, Xu Q
. Classification of Autism Spectrum Disorder Using Random Support Vector Machine Cluster. Front Genet. 2018; 9:18.
PMC: 5808191.
DOI: 10.3389/fgene.2018.00018.
View
11.
Wan Z, Li M, Wang Z, Tan H, Li W, Yu L
. CellT-Net: A Composite Transformer Method for 2-D Cell Instance Segmentation. IEEE J Biomed Health Inform. 2023; 28(2):730-741.
DOI: 10.1109/JBHI.2023.3265006.
View
12.
Li X, Zhou Y, Dvornek N, Zhang M, Gao S, Zhuang J
. BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis. Med Image Anal. 2021; 74:102233.
PMC: 9916535.
DOI: 10.1016/j.media.2021.102233.
View
13.
Dai Y, Deng T, Chen M, Huang B, Ji Y, Feng Y
. Improving early detection, diagnosis and intervention for children with autism spectrum disorder: A cross-sectional survey in China. Res Dev Disabil. 2023; 142:104616.
DOI: 10.1016/j.ridd.2023.104616.
View
14.
Mertz L
. AI, Virtual Reality, and Robots Advancing Autism Diagnosis and Therapy. IEEE Pulse. 2021; 12(5):6-10.
DOI: 10.1109/MPULS.2021.3113092.
View
15.
Bejarano-Martin A, Canal-Bedia R, Magan-Maganto M, Fernandez-Alvarez C, Cilleros-Martin M, Sanchez-Gomez M
. Early Detection, Diagnosis and Intervention Services for Young Children with Autism Spectrum Disorder in the European Union (ASDEU): Family and Professional Perspectives. J Autism Dev Disord. 2019; 50(9):3380-3394.
DOI: 10.1007/s10803-019-04253-0.
View
16.
Chao-Gan Y, Yu-Feng Z
. DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI. Front Syst Neurosci. 2010; 4:13.
PMC: 2889691.
DOI: 10.3389/fnsys.2010.00013.
View
17.
Wang C, Xiao Z, Wu J
. Functional connectivity-based classification of autism and control using SVM-RFECV on rs-fMRI data. Phys Med. 2019; 65:99-105.
DOI: 10.1016/j.ejmp.2019.08.010.
View
18.
Takayanagi M, Kawasaki Y, Shinomiya M, Hiroshi H, Okada S, Ino T
. Review of Cognitive Characteristics of Autism Spectrum Disorder Using Performance on Six Subtests on Four Versions of the Wechsler Intelligence Scale for Children. J Autism Dev Disord. 2021; 52(1):240-253.
PMC: 8732936.
DOI: 10.1007/s10803-021-04932-x.
View
19.
Craddock R, James G, Holtzheimer 3rd P, Hu X, Mayberg H
. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp. 2011; 33(8):1914-28.
PMC: 3838923.
DOI: 10.1002/hbm.21333.
View
20.
Chen L, Zhou Y, Gao S, Li M, Tan H, Wan Z
. ARA-net: an attention-aware retinal atrophy segmentation network coping with fundus images. Front Neurosci. 2023; 17:1174937.
PMC: 10174230.
DOI: 10.3389/fnins.2023.1174937.
View