» Articles » PMID: 38650984

Application of Metal-organic Frameworks and Their Derivates for Thermal-catalytic C1 Molecules Conversion

Overview
Journal iScience
Publisher Cell Press
Date 2024 Apr 23
PMID 38650984
Authors
Affiliations
Soon will be listed here.
Abstract

One-carbon (C1) catalysis refers to the conversion of compounds with a single carbon atom, especially carbon monoxide (CO), carbon dioxide (CO), and methane (CH), into clean fuels and valuable chemicals via catalytic strategy is crucial for sustainable and green development. Among various catalytic strategies, thermal-driven process seems to be one of the most promising pathways for C1 catalysis due to the high efficiency and practical application prospect. Notably, the rational design of thermal-driven C1 catalysts plays a vital role in boosting the targeted products synthesis of C1 catalysis, which relies heavily on the choice of ideal active site support, catalyst fabrication precursor, and catalytic reaction field. As a novel crystalline porous material, metal-organic frameworks (MOFs) has made significant progress in the design and synthesis of various functional nanomaterials. However, the application of MOFs in C1 catalysis faces numerous challenges, such as thermal stability, mechanical strength, yield of MOFs, and so on. To overcome these limitations and harness the advantages of MOFs in thermal-driven C1 catalysis, researchers have developed various catalyst/carrier preparation strategies. In this review, we provide a concise overview of the recent advancements in the conversion of CO, CO, and CH into clean fuels and valuable chemicals via thermal-catalytic strategy using MOFs-based catalysts. Furthermore, we discuss the main challenges and opportunities associated with MOFs-based catalysts for thermal-driven C1 catalysis in the future.

References
1.
Eddaoudi M, Sava D, Eubank J, Adil K, Guillerm V . Zeolite-like metal-organic frameworks (ZMOFs): design, synthesis, and properties. Chem Soc Rev. 2014; 44(1):228-49. DOI: 10.1039/c4cs00230j. View

2.
Furukawa H, Go Y, Ko N, Park Y, Uribe-Romo F, Kim J . Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. Inorg Chem. 2011; 50(18):9147-52. DOI: 10.1021/ic201376t. View

3.
Modak A, Ghosh A, Bhaumik A, Chowdhury B . CO hydrogenation over functional nanoporous polymers and metal-organic frameworks. Adv Colloid Interface Sci. 2021; 290:102349. DOI: 10.1016/j.cis.2020.102349. View

4.
Wang T, Gao L, Hou J, Herou S, Griffiths J, Li W . Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. Nat Commun. 2019; 10(1):1340. PMC: 6430784. DOI: 10.1038/s41467-019-08972-x. View

5.
Zhu Y, Zheng J, Ye J, Cui Y, Koh K, Kovarik L . Copper-zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO to methanol. Nat Commun. 2020; 11(1):5849. PMC: 7674450. DOI: 10.1038/s41467-020-19438-w. View