Artificial Intelligence Chatbot Interpretation of Ophthalmic Multimodal Imaging Cases
Overview
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
References
1.
Mihalache A, Huang R, Popovic M, Patil N, Pandya B, Shor R
. Accuracy of an Artificial Intelligence Chatbot's Interpretation of Clinical Ophthalmic Images. JAMA Ophthalmol. 2024; 142(4):321-326.
PMC: 10905373.
DOI: 10.1001/jamaophthalmol.2024.0017.
View
2.
Li Z, Wang L, Wu X, Jiang J, Qiang W, Xie H
. Artificial intelligence in ophthalmology: The path to the real-world clinic. Cell Rep Med. 2023; 4(7):101095.
PMC: 10394169.
DOI: 10.1016/j.xcrm.2023.101095.
View
3.
Mihalache A, Huang R, Popovic M, Muni R
. ChatGPT-4: An assessment of an upgraded artificial intelligence chatbot in the United States Medical Licensing Examination. Med Teach. 2023; 46(3):366-372.
DOI: 10.1080/0142159X.2023.2249588.
View
4.
Kawali A, Pichi F, Avadhani K, Invernizzi A, Hashimoto Y, Mahendradas P
. Multimodal Imaging of the Normal Eye. Ocul Immunol Inflamm. 2017; 25(5):721-731.
DOI: 10.1080/09273948.2017.1375531.
View
5.
Kung T, Cheatham M, Medenilla A, Sillos C, De Leon L, Elepano C
. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digit Health. 2023; 2(2):e0000198.
PMC: 9931230.
DOI: 10.1371/journal.pdig.0000198.
View