» Articles » PMID: 38646931

Advances in Nanotechnology for Improving the Targeted Delivery and Activity of Amphotericin B (2011-2023): a Systematic Review

Overview
Journal Nanotoxicology
Publisher Informa Healthcare
Date 2024 Apr 22
PMID 38646931
Authors
Affiliations
Soon will be listed here.
Abstract

Amphotericin B (AmB) is a broad-spectrum therapeutic and effective drug, but it has serious side effects of toxicity and solubility. Therefore, reducing its toxicity should be considered in therapeutic applications. Nanotechnology has paved the way to improve drug delivery systems and reduce toxicity. The present study, for the first time, comprehensively reviews the studies from 2011 to 2023 on reducing the toxicity of AmB. The findings showed that loading AmB with micellar structures, nanostructured lipid carriers, liposomes, emulsions, poly lactide-co-glycolide acid, chitosan, dendrimers, and other polymeric nanoparticles increases the biocompatibility and efficacy of the drug and significantly reduces toxicity. In addition, modified carbon nanoparticles (including graphene, carbon nanotubes, and carbon dots) with positively charged amine groups, PEI, and other components showed favorable drug delivery properties. Uncoated and coated magnetic nanoparticles and silver NPs-AmB composites had less cytotoxicity and more antifungal activity than free AmB. Citrate-reduced GNPs and lipoic acid-functionalized GNPs were also effective nanocarriers to reduce AmB cytotoxicity and improve anti-leishmania efficacy. In addition, zinc oxide-NPs and PEGylated zinc oxide-NPs showed favorable antifungal activity and negligible toxicity. According to a review study, carbon-based nanoparticles, metal nanoparticles, and especially polymer nanoparticles caused some reduction in the toxicity and improved solubility of AmB in water. Overall, considering the discussed nanocarriers, further research on the application of nanotechnology as a cost-effective candidate to improve the efficiency and reduce the cytotoxicity of AmB is recommended.

Citing Articles

The evolution of antifungal therapy: Traditional agents, current challenges and future perspectives.

Souza C, Bezerra B, Mellon D, de Oliveira H Curr Res Microb Sci. 2025; 8:100341.

PMID: 39897698 PMC: 11786858. DOI: 10.1016/j.crmicr.2025.100341.


Amphotericin B Encapsulation in Polymeric Nanoparticles: Toxicity Insights via Cells and Zebrafish Embryo Testing.

Maciel-Magalhaes M, Medeiros R, Guedes N, Brito T, Souza G, Canabarro B Pharmaceutics. 2025; 17(1).

PMID: 39861763 PMC: 11768399. DOI: 10.3390/pharmaceutics17010116.


Enhancing Drug Solubility, Bioavailability, and Targeted Therapeutic Applications through Magnetic Nanoparticles.

Zhuo Y, Zhao Y, Zhang Y Molecules. 2024; 29(20).

PMID: 39459222 PMC: 11510236. DOI: 10.3390/molecules29204854.