6.
Tang H, Li D, Zhang J, Hsu Y, Wang T, Zhai S
. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2016; 18(12):1199-1206.
DOI: 10.1111/dom.12742.
View
7.
Poiana C, Capatina C
. OSTEOPOROSIS AND FRACTURE RISK IN PATIENTS WITH TYPE 2 DIABETES MELLITUS. Acta Endocrinol (Buchar). 2019; 15(2):231-236.
PMC: 6711646.
DOI: 10.4183/aeb.2019.231.
View
8.
Eller-Vainicher C, Cairoli E, Grassi G, Grassi F, Catalano A, Merlotti D
. Pathophysiology and Management of Type 2 Diabetes Mellitus Bone Fragility. J Diabetes Res. 2020; 2020:7608964.
PMC: 7262667.
DOI: 10.1155/2020/7608964.
View
9.
Compston J
. Type 2 diabetes mellitus and bone. J Intern Med. 2017; 283(2):140-153.
DOI: 10.1111/joim.12725.
View
10.
Starup-Linde J, Eriksen S, Lykkeboe S, Handberg A, Vestergaard P
. Biochemical markers of bone turnover in diabetes patients--a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int. 2014; 25(6):1697-708.
DOI: 10.1007/s00198-014-2676-7.
View
11.
Abdi A, Pasiou E, Konstantopoulos P, Driva T, Kontos A, Papagianni E
. Effects of Incretin Pathway Elements on Bone Properties. Cureus. 2023; 15(1):e33656.
PMC: 9833274.
DOI: 10.7759/cureus.33656.
View
12.
Shetty S, Kapoor N, Bondu J, Thomas N, Paul T
. Bone turnover markers: Emerging tool in the management of osteoporosis. Indian J Endocrinol Metab. 2016; 20(6):846-852.
PMC: 5105571.
DOI: 10.4103/2230-8210.192914.
View
13.
Kanda J, Furukawa M, Izumo N, Shimakura T, Yamamoto N, Takahashi H
. Effects of the linagliptin, dipeptidyl peptidase-4 inhibitor, on bone fragility induced by type 2 diabetes mellitus in obese mice. Drug Discov Ther. 2020; 14(5):218-225.
DOI: 10.5582/ddt.2020.03073.
View
14.
Thrailkill K, Lumpkin Jr C, Bunn R, Kemp S, Fowlkes J
. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab. 2005; 289(5):E735-45.
PMC: 2387001.
DOI: 10.1152/ajpendo.00159.2005.
View
15.
Jackuliak P, Kuzma M, Payer J
. Effect of antidiabetic treatment on bone. Physiol Res. 2019; 68(Suppl 2):S107-S120.
DOI: 10.33549/physiolres.934297.
View
16.
Xiao W, Wang Y, Hou W, Xie C, Wang H, Hong T
. The effects of pioglitazone on biochemical markers of bone turnover in the patients with type 2 diabetes. Int J Endocrinol. 2013; 2013:290734.
PMC: 3697297.
DOI: 10.1155/2013/290734.
View
17.
Hidayat K, Du X, Wu M, Shi B
. The use of metformin, insulin, sulphonylureas, and thiazolidinediones and the risk of fracture: Systematic review and meta-analysis of observational studies. Obes Rev. 2019; 20(10):1494-1503.
DOI: 10.1111/obr.12885.
View
18.
Huang H, Huang Z, Hua L, Liu W, Xu F, Ge X
. The association between normal serum sodium levels and bone turnover in patients with type 2 diabetes. Front Endocrinol (Lausanne). 2022; 13:927223.
PMC: 9646934.
DOI: 10.3389/fendo.2022.927223.
View
19.
Yang Q, Fu B, Luo D, Wang H, Cao H, Chen X
. The Multiple Biological Functions of Dipeptidyl Peptidase-4 in Bone Metabolism. Front Endocrinol (Lausanne). 2022; 13:856954.
PMC: 9109619.
DOI: 10.3389/fendo.2022.856954.
View
20.
McCarthy A, Cortizo A, Sedlinsky C
. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy. World J Diabetes. 2016; 7(6):122-33.
PMC: 4807302.
DOI: 10.4239/wjd.v7.i6.122.
View