6.
Cai X, Zhang R, Guo Y, He J, Li S, Zhu Z
. Optimization of ultrasound-assisted extraction of gardenia fruit oil with bioactive components and their identification and quantification by HPLC-DAD/ESI-MS(2). Food Funct. 2015; 6(7):2194-204.
DOI: 10.1039/c5fo00205b.
View
7.
Kashani L, Esalatmanesh S, Eftekhari F, Salimi S, Foroughifar T, Etesam F
. Efficacy of Crocus sativus (saffron) in treatment of major depressive disorder associated with post-menopausal hot flashes: a double-blind, randomized, placebo-controlled trial. Arch Gynecol Obstet. 2018; 297(3):717-724.
DOI: 10.1007/s00404-018-4655-2.
View
8.
Wang W, He P, Zhao D, Ye L, Dai L, Zhang X
. Construction of Escherichia coli cell factories for crocin biosynthesis. Microb Cell Fact. 2019; 18(1):120.
PMC: 6610952.
DOI: 10.1186/s12934-019-1166-1.
View
9.
Cid-Perez T, Nevarez-Moorillon G, Ochoa-Velasco C, Navarro-Cruz A, Hernandez-Carranza P, Avila-Sosa R
. The Relation between Drying Conditions and the Development of Volatile Compounds in Saffron (). Molecules. 2021; 26(22).
PMC: 8621395.
DOI: 10.3390/molecules26226954.
View
10.
Diretto G, Ahrazem O, Rubio-Moraga A, Fiore A, Sevi F, Argandona J
. UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus). New Phytol. 2019; 224(2):725-740.
DOI: 10.1111/nph.16079.
View
11.
Xu Z, Pu X, Gao R, Demurtas O, Fleck S, Richter M
. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. BMC Biol. 2020; 18(1):63.
PMC: 7302004.
DOI: 10.1186/s12915-020-00795-3.
View
12.
Ryvlin P, Rheims S, Hirsch L, Sokolov A, Jehi L
. Neuromodulation in epilepsy: state-of-the-art approved therapies. Lancet Neurol. 2021; 20(12):1038-1047.
DOI: 10.1016/S1474-4422(21)00300-8.
View
13.
Rashidi K, Korani M, Nemati H, Shahraki R, Korani S, Abbasifard M
. The Combined Effect of Curcumin and Crocin on the Reduction of Inflammatory Responses in Arthritic Rats. Curr Med Chem. 2023; 31(28):4562-4577.
DOI: 10.2174/0929867330666230409003744.
View
14.
Ding F, Liu F, Shao W, Chu J, Wu B, He B
. Efficient Synthesis of Crocins from Crocetin by a Microbial Glycosyltransferase from Bacillus subtilis 168. J Agric Food Chem. 2018; 66(44):11701-11708.
DOI: 10.1021/acs.jafc.8b04274.
View
15.
Bakshi H, Quinn G, Nasef M, Mishra V, Aljabali A, El-Tanani M
. Crocin Inhibits Angiogenesis and Metastasis in Colon Cancer via TNF-α/NF-kB/VEGF Pathways. Cells. 2022; 11(9).
PMC: 9104358.
DOI: 10.3390/cells11091502.
View
16.
Manochkumar J, Singh A, Efferth T, Ramamoorthy S
. Untapping the protective role of carotenoids against respiratory diseases. Phytomedicine. 2022; 104:154286.
DOI: 10.1016/j.phymed.2022.154286.
View
17.
Gupta I, Adin S, Panda B, Mujeeb M
. β-Carotene-production methods, biosynthesis from Phaffia rhodozyma, factors affecting its production during fermentation, pharmacological properties: A review. Biotechnol Appl Biochem. 2022; 69(6):2517-2529.
DOI: 10.1002/bab.2301.
View
18.
Pu X, He C, Yang Y, Wang W, Hu K, Xu Z
. Production of Five Crocins in the Engineered . ACS Synth Biol. 2020; 9(5):1160-1168.
DOI: 10.1021/acssynbio.0c00039.
View
19.
Zheng X, Mi J, Balakrishna A, Liew K, Ablazov A, Sougrat R
. Gardenia carotenoid cleavage dioxygenase 4a is an efficient tool for biotechnological production of crocins in green and non-green plant tissues. Plant Biotechnol J. 2022; 20(11):2202-2216.
PMC: 9616529.
DOI: 10.1111/pbi.13901.
View
20.
Mostafavinia S, Khorashadizadeh M, Hoshyar R
. Antiproliferative and Proapoptotic Effects of Crocin Combined with Hyperthermia on Human Breast Cancer Cells. DNA Cell Biol. 2016; 35(7):340-7.
DOI: 10.1089/dna.2015.3208.
View