6.
Lawhern V, Solon A, Waytowich N, Gordon S, Hung C, Lance B
. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J Neural Eng. 2018; 15(5):056013.
DOI: 10.1088/1741-2552/aace8c.
View
7.
Xing Y, Caterina G, Soraghan J
. A New Spiking Convolutional Recurrent Neural Network (SCRNN) With Applications to Event-Based Hand Gesture Recognition. Front Neurosci. 2020; 14:590164.
PMC: 7722478.
DOI: 10.3389/fnins.2020.590164.
View
8.
Pals M, Belizon R, Berberich N, Ehrlich S, Nassour J, Cheng G
. Demonstrating the Viability of Mapping Deep Learning Based EEG Decoders to Spiking Networks on Low-powered Neuromorphic Chips. Annu Int Conf IEEE Eng Med Biol Soc. 2021; 2021:6102-6105.
DOI: 10.1109/EMBC46164.2021.9629621.
View
9.
Merolla P, Arthur J, Alvarez-Icaza R, Cassidy A, Sawada J, Akopyan F
. Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science. 2014; 345(6197):668-73.
DOI: 10.1126/science.1254642.
View
10.
Delorme A, Makeig S
. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004; 134(1):9-21.
DOI: 10.1016/j.jneumeth.2003.10.009.
View
11.
Zheng W, Lu B
. A multimodal approach to estimating vigilance using EEG and forehead EOG. J Neural Eng. 2017; 14(2):026017.
DOI: 10.1088/1741-2552/aa5a98.
View
12.
Rashid M, Sulaiman N, P P Abdul Majeed A, Musa R, Ab Nasir A, Bari B
. Current Status, Challenges, and Possible Solutions of EEG-Based Brain-Computer Interface: A Comprehensive Review. Front Neurorobot. 2020; 14:25.
PMC: 7283463.
DOI: 10.3389/fnbot.2020.00025.
View
13.
Demir A, Koike-Akino T, Wang Y, Haruna M, Erdogmus D
. EEG-GNN: Graph Neural Networks for Classification of Electroencephalogram (EEG) Signals. Annu Int Conf IEEE Eng Med Biol Soc. 2021; 2021:1061-1067.
DOI: 10.1109/EMBC46164.2021.9630194.
View
14.
Tavanaei A, Ghodrati M, Kheradpisheh S, Masquelier T, Maida A
. Deep learning in spiking neural networks. Neural Netw. 2019; 111:47-63.
DOI: 10.1016/j.neunet.2018.12.002.
View
15.
Mento G
. The passive CNV: carving out the contribution of task-related processes to expectancy. Front Hum Neurosci. 2013; 7:827.
PMC: 3859886.
DOI: 10.3389/fnhum.2013.00827.
View
16.
Wu Z, Pan S, Chen F, Long G, Zhang C, Yu P
. A Comprehensive Survey on Graph Neural Networks. IEEE Trans Neural Netw Learn Syst. 2020; 32(1):4-24.
DOI: 10.1109/TNNLS.2020.2978386.
View
17.
Mirzabagherian H, Menhaj M, Suratgar A, Talebi N, Abbasi Sardari M, Sajedin A
. Temporal-spatial convolutional residual network for decoding attempted movement related EEG signals of subjects with spinal cord injury. Comput Biol Med. 2023; 164:107159.
DOI: 10.1016/j.compbiomed.2023.107159.
View
18.
Kumarasinghe K, Kasabov N, Taylor D
. Brain-inspired spiking neural networks for decoding and understanding muscle activity and kinematics from electroencephalography signals during hand movements. Sci Rep. 2021; 11(1):2486.
PMC: 7844055.
DOI: 10.1038/s41598-021-81805-4.
View
19.
Garipelli G, Chavarriaga R, Millan J
. Single trial analysis of slow cortical potentials: a study on anticipation related potentials. J Neural Eng. 2013; 10(3):036014.
DOI: 10.1088/1741-2560/10/3/036014.
View
20.
Haufe S, Treder M, Gugler M, Sagebaum M, Curio G, Blankertz B
. EEG potentials predict upcoming emergency brakings during simulated driving. J Neural Eng. 2011; 8(5):056001.
DOI: 10.1088/1741-2560/8/5/056001.
View