6.
Darrah P, Zeppa J, Maiello P, Hackney J, Wadsworth 2nd M, Hughes T
. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature. 2020; 577(7788):95-102.
PMC: 7015856.
DOI: 10.1038/s41586-019-1817-8.
View
7.
Derrick S, Yabe I, Yang A, Morris S
. Vaccine-induced anti-tuberculosis protective immunity in mice correlates with the magnitude and quality of multifunctional CD4 T cells. Vaccine. 2011; 29(16):2902-9.
DOI: 10.1016/j.vaccine.2011.02.010.
View
8.
Dunn G, Bruce A, Ikeda H, Old L, Schreiber R
. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002; 3(11):991-8.
DOI: 10.1038/ni1102-991.
View
9.
Erkes D, Smith C, Wilski N, Caldeira-Dantas S, Mohgbeli T, Snyder C
. Virus-Specific CD8 T Cells Infiltrate Melanoma Lesions and Retain Function Independently of PD-1 Expression. J Immunol. 2017; 198(7):2979-2988.
PMC: 5360480.
DOI: 10.4049/jimmunol.1601064.
View
10.
Foster M, Hill P, Setiabudiawan T, Koeken V, Alisjahbana B, van Crevel R
. BCG-induced protection against Mycobacterium tuberculosis infection: Evidence, mechanisms, and implications for next-generation vaccines. Immunol Rev. 2021; 301(1):122-144.
PMC: 8252066.
DOI: 10.1111/imr.12965.
View
11.
Garcia-Diaz A, Shin D, Moreno B, Saco J, Escuin-Ordinas H, Rodriguez G
. Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Rep. 2017; 19(6):1189-1201.
PMC: 6420824.
DOI: 10.1016/j.celrep.2017.04.031.
View
12.
Guo X, Du W, Li J, Dong J, Shen X, Su C
. A Comparative Study on the Mechanism of Delayed-Type Hypersensitivity Mediated by the Recombinant Fusion Protein ESAT6-CFP10 and Purified Protein Derivative. Int J Mol Sci. 2023; 24(23).
PMC: 10706316.
DOI: 10.3390/ijms242316612.
View
13.
He Q, Jiang X, Zhou X, Weng J
. Targeting cancers through TCR-peptide/MHC interactions. J Hematol Oncol. 2019; 12(1):139.
PMC: 6921533.
DOI: 10.1186/s13045-019-0812-8.
View
14.
Henz B, Macher E, Brocker E, Suciu S, Steerenberg P, Jung E
. Prognostic value of tuberculin and BCG immunoreactivity in stage I high-risk malignant melanoma (EORTC protocol 18781). Dermatology. 1996; 193(2):105-9.
DOI: 10.1159/000246222.
View
15.
Ichikawa K, Asai T, Shimizu K, Yonezawa S, Urakami T, Miyauchi H
. Suppression of immune response by antigen-modified liposomes encapsulating model agents: a novel strategy for the treatment of allergy. J Control Release. 2013; 167(3):284-9.
DOI: 10.1016/j.jconrel.2013.02.002.
View
16.
Ji N, Mukherjee N, Shu Z, Reyes R, Meeks J, McConkey D
. γδ T Cells Support Antigen-Specific αβ T cell-Mediated Antitumor Responses during BCG Treatment for Bladder Cancer. Cancer Immunol Res. 2021; 9(12):1491-1503.
PMC: 8691423.
DOI: 10.1158/2326-6066.CIR-21-0285.
View
17.
Jiang X, Wang J, Zheng X, Liu Z, Zhang X, Li Y
. Intratumoral administration of STING-activating nanovaccine enhances T cell immunotherapy. J Immunother Cancer. 2022; 10(5).
PMC: 9150169.
DOI: 10.1136/jitc-2021-003960.
View
18.
Kalaora S, Nagler A, Nejman D, Alon M, Barbolin C, Barnea E
. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature. 2021; 592(7852):138-143.
PMC: 9717498.
DOI: 10.1038/s41586-021-03368-8.
View
19.
Karbalaei Zadeh Babaki M, Soleimanpour S, Rezaee S
. Antigen 85 complex as a powerful Mycobacterium tuberculosis immunogene: Biology, immune-pathogenicity, applications in diagnosis, and vaccine design. Microb Pathog. 2017; 112:20-29.
DOI: 10.1016/j.micpath.2017.08.040.
View
20.
Kuai R, Ochyl L, Bahjat K, Schwendeman A, Moon J
. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater. 2016; 16(4):489-496.
PMC: 5374005.
DOI: 10.1038/nmat4822.
View