» Articles » PMID: 38621828

Extreme Genome Scrambling in Marine Planktonic Cryptic Species

Abstract

Genome structural variations within species are rare. How selective constraints preserve gene order and chromosome structure is a central question in evolutionary biology that remains unsolved. Our sequencing of several genomes of the appendicularian tunicate around the globe reveals extreme genome scrambling caused by thousands of chromosomal rearrangements, although showing no obvious morphological differences between these animals. The breakpoint accumulation rate is an order of magnitude higher than in ascidian tunicates, nematodes, or mammals. Chromosome arms and sex-specific regions appear to be the primary unit of macrosynteny conservation. At the microsyntenic level, scrambling did not preserve operon structures, suggesting an absence of selective pressure to maintain them. The uncoupling of the genome scrambling with morphological conservation in suggests the presence of previously unnoticed cryptic species and provides a new biological system that challenges our previous vision of speciation in which similar animals always share similar genome structures.

Citing Articles

Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms.

Gasiorowski L J Mol Evol. 2025; 93(1):124-135.

PMID: 39825915 DOI: 10.1007/s00239-024-10226-4.


Fusion, fission, and scrambling of the bilaterian genome in Bryozoa.

Lewin T, Liao I, Chen M, Bishop J, Holland P, Luo Y Genome Res. 2025; 35(1):78-92.

PMID: 39762050 PMC: 11789643. DOI: 10.1101/gr.279636.124.


Less, but More: New Insights From Appendicularians on Chordate Fgf Evolution and the Divergence of Tunicate Lifestyles.

Sanchez-Serna G, Badia-Ramentol J, Bujosa P, Ferrandez-Roldan A, Torres-Aguila N, Fabrega-Torrus M Mol Biol Evol. 2024; 42(1).

PMID: 39686543 PMC: 11733497. DOI: 10.1093/molbev/msae260.


Evolutionary Insights from the Mitochondrial Genome of Oikopleura dioica: Sequencing Challenges, RNA Editing, Gene Transfers to the Nucleus, and tRNA Loss.

Klirs Y, Novosolov M, Gissi C, Garic R, Pupko T, Stach T Genome Biol Evol. 2024; 16(9).

PMID: 39162337 PMC: 11384887. DOI: 10.1093/gbe/evae181.


Tracing Homopolymers in Oikopleura dioica's Mitogenome.

Dierckxsens N, Watanabe K, Tan Y, Masunaga A, Mansfield M, Miao J Genome Biol Evol. 2024; 16(9).

PMID: 39162185 PMC: 11384890. DOI: 10.1093/gbe/evae182.


References
1.
Stamatakis A . RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30(9):1312-3. PMC: 3998144. DOI: 10.1093/bioinformatics/btu033. View

2.
Huerta-Cepas J, Serra F, Bork P . ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Mol Biol Evol. 2016; 33(6):1635-8. PMC: 4868116. DOI: 10.1093/molbev/msw046. View

3.
Suvorov A, Kim B, Wang J, Armstrong E, Peede D, DAgostino E . Widespread introgression across a phylogeny of 155 Drosophila genomes. Curr Biol. 2021; 32(1):111-123.e5. PMC: 8752469. DOI: 10.1016/j.cub.2021.10.052. View

4.
Emms D, Kelly S . OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015; 16:157. PMC: 4531804. DOI: 10.1186/s13059-015-0721-2. View

5.
de Vos J, Augustijnen H, Batscher L, Lucek K . Speciation through chromosomal fusion and fission in Lepidoptera. Philos Trans R Soc Lond B Biol Sci. 2020; 375(1806):20190539. PMC: 7423279. DOI: 10.1098/rstb.2019.0539. View