6.
Jansen F, Yang X, Franklin B, Hoelscher M, Schmitz T, Bedorf J
. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc Res. 2013; 98(1):94-106.
DOI: 10.1093/cvr/cvt013.
View
7.
Ross M, Wekesa A, Phelan J, Harrison M
. Resistance exercise increases endothelial progenitor cells and angiogenic factors. Med Sci Sports Exerc. 2013; 46(1):16-23.
DOI: 10.1249/MSS.0b013e3182a142da.
View
8.
Lu G, Xu R, Zhang S, Qiao Q, Shen L, Li M
. Alteration of circulatory platelet microparticles and endothelial microparticles in patients with chronic kidney disease. Int J Clin Exp Med. 2015; 8(9):16704-8.
PMC: 4659095.
View
9.
Ragland T, Heiston E, Ballantyne A, Stewart N, La Salvia S, Musante L
. Extracellular vesicles and insulin-mediated vascular function in metabolic syndrome. Physiol Rep. 2023; 11(1):e15530.
PMC: 9810789.
DOI: 10.14814/phy2.15530.
View
10.
Ceriello A, Motz E
. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol. 2004; 24(5):816-23.
DOI: 10.1161/01.ATV.0000122852.22604.78.
View
11.
Wilhelm E, Gonzalez-Alonso J, Parris C, Rakobowchuk M
. Exercise intensity modulates the appearance of circulating microvesicles with proangiogenic potential upon endothelial cells. Am J Physiol Heart Circ Physiol. 2016; 311(5):H1297-H1310.
DOI: 10.1152/ajpheart.00516.2016.
View
12.
Wahl P, Wehmeier U, Jansen F, Kilian Y, Bloch W, Werner N
. Acute Effects of Different Exercise Protocols on the Circulating Vascular microRNAs -16, -21, and -126 in Trained Subjects. Front Physiol. 2017; 7:643.
PMC: 5183575.
DOI: 10.3389/fphys.2016.00643.
View
13.
Fruhbeis C, Helmig S, Tug S, Simon P, Kramer-Albers E
. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles. 2015; 4:28239.
PMC: 4491306.
DOI: 10.3402/jev.v4.28239.
View
14.
Tushuizen M, Diamant M, Heine R
. Postprandial dysmetabolism and cardiovascular disease in type 2 diabetes. Postgrad Med J. 2005; 81(951):1-6.
PMC: 1743184.
DOI: 10.1136/pgmj.2004.020511.
View
15.
Amabile N, Rautou P, Tedgui A, Boulanger C
. Microparticles: key protagonists in cardiovascular disorders. Semin Thromb Hemost. 2010; 36(8):907-16.
DOI: 10.1055/s-0030-1267044.
View
16.
Steinberg H, Chaker H, LEAMING R, Johnson A, Brechtel G, Baron A
. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest. 1996; 97(11):2601-10.
PMC: 507347.
DOI: 10.1172/JCI118709.
View
17.
Rautou P, Leroyer A, Ramkhelawon B, Devue C, Duflaut D, Vion A
. Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circ Res. 2010; 108(3):335-43.
DOI: 10.1161/CIRCRESAHA.110.237420.
View
18.
Chanda M, Nantakomol D, Suksom D, Palasuwan A
. Cell-derived microparticles after exercise in individuals with G6PD Viangchan. Clin Hemorheol Microcirc. 2014; 60(2):241-51.
DOI: 10.3233/CH-141865.
View
19.
Veitch S, Njock M, Chandy M, Siraj M, Chi L, Mak H
. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes. Cardiovasc Diabetol. 2022; 21(1):31.
PMC: 8876371.
DOI: 10.1186/s12933-022-01458-z.
View
20.
Guiraud T, Gayda M, Juneau M, Bosquet L, Meyer P, Theberge-Julien G
. A single bout of high-intensity interval exercise does not increase endothelial or platelet microparticles in stable, physically fit men with coronary heart disease. Can J Cardiol. 2013; 29(10):1285-91.
DOI: 10.1016/j.cjca.2013.03.024.
View