6.
Ronnberg J, Lunner T, Zekveld A, Sorqvist P, Danielsson H, Lyxell B
. The Ease of Language Understanding (ELU) model: theoretical, empirical, and clinical advances. Front Syst Neurosci. 2013; 7:31.
PMC: 3710434.
DOI: 10.3389/fnsys.2013.00031.
View
7.
Hallock A, Berman E, Zare R
. Ultratrace kinetic measurements of the reduction of methylene blue. J Am Chem Soc. 2003; 125(5):1158-9.
DOI: 10.1021/ja028129r.
View
8.
Bellido-Pedraza C, Calatrava V, Llamas A, Fernandez E, Sanz-Luque E, Galvan A
. Nitrous Oxide Emissions from Nitrite Are Highly Dependent on Nitrate Reductase in the Microalga . Int J Mol Sci. 2022; 23(16).
PMC: 9409008.
DOI: 10.3390/ijms23169412.
View
9.
Yin X, Goudriaan J, Lantinga E, Vos J, Spiertz H
. A flexible sigmoid function of determinate growth. Ann Bot. 2003; 91(3):361-71.
PMC: 4244967.
DOI: 10.1093/aob/mcg029.
View
10.
Ramimoghadam D, Hussein M, Hin Taufiq-Yap Y
. The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the Properties of ZnO synthesized by hydrothermal method. Int J Mol Sci. 2012; 13(10):13275-93.
PMC: 3497326.
DOI: 10.3390/ijms131013275.
View
11.
Luna J, Rufino R, Albuquerque C, Sarubbo L, Campos-Takaki G
. Economic optimized medium for tensio-active agent production by Candida sphaerica UCP0995 and application in the removal of hydrophobic contaminant from sand. Int J Mol Sci. 2011; 12(4):2463-76.
PMC: 3127128.
DOI: 10.3390/ijms12042463.
View
12.
Mahmoodi-Babolan N, Heydari A, Nematollahzadeh A
. Removal of methylene blue via bioinspired catecholamine/starch superadsorbent and the efficiency prediction by response surface methodology and artificial neural network-particle swarm optimization. Bioresour Technol. 2019; 294:122084.
DOI: 10.1016/j.biortech.2019.122084.
View
13.
Cannavo S, Bertoldi A, Valeri M, Damiani F, Reale L, Brilli F
. Impact of High Light Intensity and Low Temperature on the Growth and Phenylpropanoid Profile of . Int J Mol Sci. 2023; 24(10).
PMC: 10218715.
DOI: 10.3390/ijms24108554.
View
14.
Koutsoukas A, Monaghan K, Li X, Huan J
. Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data. J Cheminform. 2017; 9(1):42.
PMC: 5489441.
DOI: 10.1186/s13321-017-0226-y.
View