6.
Huber T, Miller G, Patrie J, Angle J
. Relationship of Antenna Work and Ablation Cavity Volume Following Percutaneous Microwave Ablation of Hepatic Tumors. J Vasc Interv Radiol. 2021; 32(4):536-543.
DOI: 10.1016/j.jvir.2020.12.012.
View
7.
Cafarchio A, Iasiello M, Vanoli G, Andreozzi A
. Microwave ablation modeling with AMICA antenna: Validation by means a numerical analysis. Comput Biol Med. 2023; 167:107669.
DOI: 10.1016/j.compbiomed.2023.107669.
View
8.
Hines-Peralta A, Pirani N, Clegg P, Cronin N, Ryan T, Liu Z
. Microwave ablation: results with a 2.45-GHz applicator in ex vivo bovine and in vivo porcine liver. Radiology. 2006; 239(1):94-102.
DOI: 10.1148/radiol.2383050262.
View
9.
Bedoya M, Rio A, Chiang J, Brace C
. Microwave ablation energy delivery: influence of power pulsing on ablation results in an ex vivo and in vivo liver model. Med Phys. 2014; 41(12):123301.
PMC: 4240778.
DOI: 10.1118/1.4901312.
View
10.
Lee J, Siripongsakun S, Bahrami S, Raman S, Sayre J, Lu D
. Microwave ablation of liver tumors: degree of tissue contraction as compared to RF ablation. Abdom Radiol (NY). 2016; 41(4):659-66.
DOI: 10.1007/s00261-016-0725-8.
View
11.
Tucci C, Trujillo M, Berjano E, Iasiello M, Andreozzi A, Vanoli G
. Mathematical modeling of microwave liver ablation with a variable-porosity medium approach. Comput Methods Programs Biomed. 2021; 214:106569.
DOI: 10.1016/j.cmpb.2021.106569.
View
12.
Harari C, Magagna M, Bedoya M, Lee Jr F, Lubner M, Hinshaw J
. Microwave Ablation: Comparison of Simultaneous and Sequential Activation of Multiple Antennas in Liver Model Systems. Radiology. 2015; 278(1):95-103.
PMC: 4699493.
DOI: 10.1148/radiol.2015142151.
View
13.
Deshazer G, Merck D, Hagmann M, Dupuy D, Prakash P
. Physical modeling of microwave ablation zone clinical margin variance. Med Phys. 2016; 43(4):1764.
DOI: 10.1118/1.4942980.
View
14.
Amabile C, Ahmed M, Solbiati L, Meloni M, Solbiati M, Cassarino S
. Microwave ablation of primary and secondary liver tumours: ex vivo, in vivo, and clinical characterisation. Int J Hyperthermia. 2016; 33(1):34-42.
DOI: 10.1080/02656736.2016.1196830.
View
15.
Ruiter S, de Jong J, Pennings J, de Haas R, de Jong K
. Comparison of Two 2.45 GHz Microwave Ablation Devices with Respect to Ablation Zone Volume in Relation to Applied Energy in Patients with Malignant Liver Tumours. Cancers (Basel). 2022; 14(22).
PMC: 9688226.
DOI: 10.3390/cancers14225570.
View
16.
Shyn P, Bird J, Koch R, Tatli S, Levesque V, Catalano P
. Hepatic Microwave Ablation Zone Size: Correlation with Total Energy, Net Energy, and Manufacturer-Provided Chart Predictions. J Vasc Interv Radiol. 2016; 27(9):1389-1396.
DOI: 10.1016/j.jvir.2016.05.009.
View
17.
Liu Z, Ahmed M, Weinstein Y, Yi M, Mahajan R, Goldberg S
. Characterization of the RF ablation-induced 'oven effect': the importance of background tissue thermal conductivity on tissue heating. Int J Hyperthermia. 2006; 22(4):327-42.
DOI: 10.1080/02656730600609122.
View
18.
Hui T, Brace C, Hinshaw J, Quek L, Huang I, Kwan J
. Microwave ablation of the liver in a live porcine model: the impact of power, time and total energy on ablation zone size and shape. Int J Hyperthermia. 2020; 37(1):668-676.
DOI: 10.1080/02656736.2020.1774083.
View
19.
Ryan M, Willatt J, Majdalany B, Kielar A, Chong S, Ruma J
. Ablation techniques for primary and metastatic liver tumors. World J Hepatol. 2016; 8(3):191-9.
PMC: 4724581.
DOI: 10.4254/wjh.v8.i3.191.
View
20.
Boyce C, Pickhardt P, Kim D, Taylor A, Winter T, Bruce R
. Hepatic steatosis (fatty liver disease) in asymptomatic adults identified by unenhanced low-dose CT. AJR Am J Roentgenol. 2010; 194(3):623-8.
DOI: 10.2214/AJR.09.2590.
View