» Articles » PMID: 38602587

Engineering Biomimetic Nanosystem Targeting Multiple Tumor Radioresistance Hallmarks for Enhanced Radiotherapy

Overview
Specialties Biology
Science
Date 2024 Apr 11
PMID 38602587
Authors
Affiliations
Soon will be listed here.
Abstract

Tumor cells establish a robust self-defense system characterized by hypoxia, antioxidant overexpression, DNA damage repair, and so forth to resist radiotherapy. Targeting one of these features is insufficient to overcome radioresistance due to the feedback mechanisms initiated by tumor cells under radiotherapy. Therefore, we herein developed an engineering biomimetic nanosystem (M@HHPt) masked with tumor cell membranes and loaded with a hybridized protein-based nanoparticle carrying oxygens (O) and cisplatin prodrugs (Pt(IV)) to target multiple tumor radioresistance hallmarks for enhanced radiotherapy. After administration, M@HHPt actively targeted and smoothly accumulated in tumor cells by virtue of its innate homing abilities to realize efficient co-delivery of O and Pt(IV). O introduction induced hypoxia alleviation cooperated with Pt(IV) reduction caused glutathione consumption greatly amplified radiotherapy-ignited cellular oxidative stress. Moreover, the released cisplatin effectively hindered DNA damage repair by crosslinking with radiotherapy-produced DNA fragments. Consequently, M@HHPt-sensitized radiotherapy significantly suppressed the proliferation of lung cancer H1975 cells with an extremely high sensitizer enhancement ratio of 1.91 and the progression of H1975 tumor models with an excellent tumor inhibition rate of 94.7%. Overall, this work provided a feasible strategy for tumor radiosensitization by overcoming multiple radioresistance mechanisms.

References
1.
Awuah S, Riddell I, Lippard S . Repair shielding of platinum-DNA lesions in testicular germ cell tumors by high-mobility group box protein 4 imparts cisplatin hypersensitivity. Proc Natl Acad Sci U S A. 2017; 114(5):950-955. PMC: 5293106. DOI: 10.1073/pnas.1615327114. View

2.
Bailly A, Correard F, Popov A, Tselikov G, Chaspoul F, Appay R . In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci Rep. 2019; 9(1):12890. PMC: 6734012. DOI: 10.1038/s41598-019-48748-3. View

3.
Barker H, Paget J, Khan A, Harrington K . The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015; 15(7):409-25. PMC: 4896389. DOI: 10.1038/nrc3958. View

4.
Birben E, Sahiner U, Sackesen C, Erzurum S, Kalayci O . Oxidative stress and antioxidant defense. World Allergy Organ J. 2012; 5(1):9-19. PMC: 3488923. DOI: 10.1097/WOX.0b013e3182439613. View

5.
Buckley A, Lynam-Lennon N, ONeill H, OSullivan J . Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nat Rev Gastroenterol Hepatol. 2020; 17(5):298-313. DOI: 10.1038/s41575-019-0247-2. View