An Artificial Enzyme for Asymmetric Nitrocyclopropanation of α,β-Unsaturated Aldehydes-Design and Evolution
Overview
Affiliations
The introduction of an abiological catalytic group into the binding pocket of a protein host allows for the expansion of enzyme chemistries. Here, we report the generation of an artificial enzyme by genetic encoding of a non-canonical amino acid that contains a secondary amine side chain. The non-canonical amino acid and the binding pocket function synergistically to catalyze the asymmetric nitrocyclopropanation of α,β-unsaturated aldehydes by the iminium activation mechanism. The designer enzyme was evolved to an optimal variant that catalyzes the reaction at high conversions with high diastereo- and enantioselectivity. This work demonstrates the application of genetic code expansion in enzyme design and expands the scope of enzyme-catalyzed abiological reactions.
Reaching New Heights in Genetic Code Manipulation with High Throughput Screening.
Lino B, Williams S, Castor M, Van Deventer J Chem Rev. 2024; 124(21):12145-12175.
PMID: 39418482 PMC: 11879460. DOI: 10.1021/acs.chemrev.4c00329.
Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis.
Brouwer B, Della-Felice F, Illies J, Iglesias-Moncayo E, Roelfes G, Drienovska I Chem Rev. 2024; 124(19):10877-10923.
PMID: 39329413 PMC: 11467907. DOI: 10.1021/acs.chemrev.4c00136.