6.
Ghomian T, Hihath J
. Review of Dielectrophoretic Manipulation of Micro and Nanomaterials: Fundamentals, Recent Developments, and Challenges. IEEE Trans Biomed Eng. 2022; 70(1):27-41.
DOI: 10.1109/TBME.2022.3183167.
View
7.
Caglayan Z, Demircan Yalcin Y, Kulah H
. A Prominent Cell Manipulation Technique in BioMEMS: Dielectrophoresis. Micromachines (Basel). 2020; 11(11).
PMC: 7693018.
DOI: 10.3390/mi11110990.
View
8.
Zhang Z, de Graaf J, Faez S
. Regulating the aggregation of colloidal particles in an electro-osmotic micropump. Soft Matter. 2020; 16(47):10707-10715.
DOI: 10.1039/d0sm01084g.
View
9.
Zaman M, Padhy P, Ren W, Wu M, Hesselink L
. Microparticle transport along a planar electrode array using moving dielectrophoresis. J Appl Phys. 2021; 130(3):034902.
PMC: 8294858.
DOI: 10.1063/5.0049126.
View
10.
Barik A, Chen X, Oh S
. Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes. Nano Lett. 2016; 16(10):6317-6324.
DOI: 10.1021/acs.nanolett.6b02690.
View
11.
Lu Y, Sun C, Kao Y, Hung C, Juang J
. Dielectrophoretic Crossover Frequency of Single Particles: Quantifying the Effect of Surface Functional Groups and Electrohydrodynamic Flow Drag Force. Nanomaterials (Basel). 2020; 10(7).
PMC: 7408174.
DOI: 10.3390/nano10071364.
View
12.
Chuang C, Wu T, Chen C, Chang K, Ju J, Huang Y
. Lab on a chip for multiplexed immunoassays to detect bladder cancer using multifunctional dielectrophoretic manipulations. Lab Chip. 2015; 15(14):3056-64.
DOI: 10.1039/c5lc00352k.
View
13.
Ivanoff C, Swami N, Hottel T, Garcia-Godoy F
. Enhanced penetration of fluoride particles into bovine enamel by combining dielectrophoresis with AC electroosmosis. Electrophoresis. 2013; 34(20-21):2945-55.
DOI: 10.1002/elps.201300206.
View
14.
Miled M, Massicotte G, Sawan M
. Dielectrophoresis-based integrated Lab-on-Chip for nano and micro-particles manipulation and capacitive detection. IEEE Trans Biomed Circuits Syst. 2013; 6(2):120-32.
DOI: 10.1109/TBCAS.2012.2185844.
View
15.
Dalili A, Taatizadeh E, Tahmooressi H, Tasnim N, Rellstab-Sanchez P, Shaunessy M
. Parametric study on the geometrical parameters of a lab-on-a-chip platform with tilted planar electrodes for continuous dielectrophoretic manipulation of microparticles. Sci Rep. 2020; 10(1):11718.
PMC: 7366698.
DOI: 10.1038/s41598-020-68699-4.
View
16.
Squires T
. Induced-charge electrokinetics: fundamental challenges and opportunities. Lab Chip. 2009; 9(17):2477-83.
DOI: 10.1039/b906909g.
View
17.
Hochstetter A
. Lab-on-a-Chip Technologies for the Single Cell Level: Separation, Analysis, and Diagnostics. Micromachines (Basel). 2020; 11(5).
PMC: 7281269.
DOI: 10.3390/mi11050468.
View
18.
Hughes M
. Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis. 2002; 23(16):2569-82.
DOI: 10.1002/1522-2683(200208)23:16<2569::AID-ELPS2569>3.0.CO;2-M.
View
19.
Wang J, Wei M, Cohen J, Ou-Yang H
. Mapping alternating current electroosmotic flow at the dielectrophoresis crossover frequency of a colloidal probe. Electrophoresis. 2013; 34(13):1915-21.
DOI: 10.1002/elps.201200614.
View
20.
Sun H, Ren Y, Hou L, Tao Y, Liu W, Jiang T
. Continuous Particle Trapping, Switching, and Sorting Utilizing a Combination of Dielectrophoresis and Alternating Current Electrothermal Flow. Anal Chem. 2019; 91(9):5729-5738.
DOI: 10.1021/acs.analchem.8b05861.
View