6.
Gago G, Kurth D, Diacovich L, Tsai S, Gramajo H
. Biochemical and structural characterization of an essential acyl coenzyme A carboxylase from Mycobacterium tuberculosis. J Bacteriol. 2005; 188(2):477-86.
PMC: 1347277.
DOI: 10.1128/JB.188.2.477-486.2006.
View
7.
Ge S, Jung D, Yao R
. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2019; 36(8):2628-2629.
PMC: 7178415.
DOI: 10.1093/bioinformatics/btz931.
View
8.
SantAnna F, Trentini D, Weber S, Cecagno R, da Silva S, Silveira Schrank I
. The PII superfamily revised: a novel group and evolutionary insights. J Mol Evol. 2009; 68(4):322-36.
DOI: 10.1007/s00239-009-9209-6.
View
9.
Read R, Pashley C, Smith D, Parish T
. The role of GlnD in ammonia assimilation in Mycobacterium tuberculosis. Tuberculosis (Edinb). 2007; 87(4):384-90.
PMC: 1913930.
DOI: 10.1016/j.tube.2006.12.003.
View
10.
Malm S, Tiffert Y, Micklinghoff J, Schultze S, Joost I, Weber I
. The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology (Reading). 2009; 155(Pt 4):1332-1339.
DOI: 10.1099/mic.0.023275-0.
View
11.
Kurth D, Gago G, de la Iglesia A, Lyonnet B, Lin T, Morbidoni H
. ACCase 6 is the essential acetyl-CoA carboxylase involved in fatty acid and mycolic acid biosynthesis in mycobacteria. Microbiology (Reading). 2009; 155(Pt 8):2664-2675.
PMC: 2865140.
DOI: 10.1099/mic.0.027714-0.
View
12.
Radchenko M, Thornton J, Merrick M
. Control of AmtB-GlnK complex formation by intracellular levels of ATP, ADP, and 2-oxoglutarate. J Biol Chem. 2010; 285(40):31037-45.
PMC: 2945594.
DOI: 10.1074/jbc.M110.153908.
View
13.
Sassetti C, Boyd D, Rubin E
. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol. 2003; 48(1):77-84.
DOI: 10.1046/j.1365-2958.2003.03425.x.
View
14.
Pawelczyk J, Brzostek A, Kremer L, Dziadek B, Rumijowska-Galewicz A, Fiolka M
. AccD6, a key carboxyltransferase essential for mycolic acid synthesis in Mycobacterium tuberculosis, is dispensable in a nonpathogenic strain. J Bacteriol. 2011; 193(24):6960-72.
PMC: 3232849.
DOI: 10.1128/JB.05638-11.
View
15.
Lee H, Flores E, Herrero A, Houmard J, de Marsac N
. A role for the signal transduction protein PII in the control of nitrate/nitrite uptake in a cyanobacterium. FEBS Lett. 1998; 427(2):291-5.
DOI: 10.1016/s0014-5793(98)00451-7.
View
16.
Rajendran C, Gerhardt E, Bjelic S, Gasperina A, Scarduelli M, Pedrosa F
. Crystal structure of the GlnZ-DraG complex reveals a different form of PII-target interaction. Proc Natl Acad Sci U S A. 2011; 108(47):18972-6.
PMC: 3223478.
DOI: 10.1073/pnas.1108038108.
View
17.
Cardoso N, Papadopoulos A, Kana B
. Mycobacterium smegmatis does not display functional redundancy in nitrate reductase enzymes. PLoS One. 2021; 16(1):e0245745.
PMC: 7816997.
DOI: 10.1371/journal.pone.0245745.
View
18.
Forchhammer K, de Marsac N
. Functional analysis of the phosphoprotein PII (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol. 1995; 177(8):2033-40.
PMC: 176846.
DOI: 10.1128/jb.177.8.2033-2040.1995.
View
19.
Diacovich L, Peiru S, Kurth D, Rodriguez E, Podesta F, Khosla C
. Kinetic and structural analysis of a new group of Acyl-CoA carboxylases found in Streptomyces coelicolor A3(2). J Biol Chem. 2002; 277(34):31228-36.
DOI: 10.1074/jbc.M203263200.
View
20.
Gerhardt E, Rodrigues T, Muller-Santos M, Pedrosa F, Souza E, Forchhammer K
. The bacterial signal transduction protein GlnB regulates the committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of acetyl-CoA carboxylase. Mol Microbiol. 2015; 95(6):1025-35.
DOI: 10.1111/mmi.12912.
View