Deep Learning to Decode Sites of RNA Translation in Normal and Cancerous Tissues
Overview
Overview
Authors
Affiliations
Affiliations
Soon will be listed here.
Abstract
The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Yet, accurately delineating the variation in RNA translation represents a significant challenge. Here, we develop RiboTIE, a transformer model-based approach to map global RNA translation. We find that RiboTIE offers unparalleled precision and sensitivity for ribosome profiling data. Application of RiboTIE to normal brain and medulloblastoma cancer samples enables high-resolution insights into disease regulation of RNA translation.
References
1.
Dunn J, Weissman J
. Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data. BMC Genomics. 2016; 17(1):958.
PMC: 5120557.
DOI: 10.1186/s12864-016-3278-x.
View
2.
Calviello L, Hirsekorn A, Ohler U
. Quantification of translation uncovers the functions of the alternative transcriptome. Nat Struct Mol Biol. 2020; 27(8):717-725.
DOI: 10.1038/s41594-020-0450-4.
View
3.
Prensner J, Abelin J, Kok L, Clauser K, Mudge J, Ruiz-Orera J
. What Can Ribo-Seq, Immunopeptidomics, and Proteomics Tell Us About the Noncanonical Proteome?. Mol Cell Proteomics. 2023; 22(9):100631.
PMC: 10506109.
DOI: 10.1016/j.mcpro.2023.100631.
View
4.
Zhang P, He D, Xu Y, Hou J, Pan B, Wang Y
. Genome-wide identification and differential analysis of translational initiation. Nat Commun. 2017; 8(1):1749.
PMC: 5701008.
DOI: 10.1038/s41467-017-01981-8.
View
5.
Ji Z
. RibORF: Identifying Genome-Wide Translated Open Reading Frames Using Ribosome Profiling. Curr Protoc Mol Biol. 2018; 124(1):e67.
PMC: 6168376.
DOI: 10.1002/cpmb.67.
View