6.
Uchida T, Tamaki Y, Ayaki T, Shodai A, Kaji S, Morimura T
. CUL2-mediated clearance of misfolded TDP-43 is paradoxically affected by VHL in oligodendrocytes in ALS. Sci Rep. 2016; 6:19118.
PMC: 4707540.
DOI: 10.1038/srep19118.
View
7.
Bright F, Chan G, van Hummel A, Ittner L, Ke Y
. TDP-43 and Inflammation: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Int J Mol Sci. 2021; 22(15).
PMC: 8346169.
DOI: 10.3390/ijms22157781.
View
8.
Takahashi Y, Uchino A, Shioya A, Sano T, Matsumoto C, Numata-Uematsu Y
. Altered immunoreactivity of ErbB4, a causative gene product for ALS19, in the spinal cord of patients with sporadic ALS. Neuropathology. 2019; 39(4):268-278.
PMC: 6852233.
DOI: 10.1111/neup.12558.
View
9.
Fumagalli M, Bonfanti E, Daniele S, Zappelli E, Lecca D, Martini C
. The ubiquitin ligase Mdm2 controls oligodendrocyte maturation by intertwining mTOR with G protein-coupled receptor kinase 2 in the regulation of GPR17 receptor desensitization. Glia. 2015; 63(12):2327-39.
DOI: 10.1002/glia.22896.
View
10.
Feldman E, Goutman S, Petri S, Mazzini L, Savelieff M, Shaw P
. Amyotrophic lateral sclerosis. Lancet. 2022; 400(10360):1363-1380.
PMC: 10089700.
DOI: 10.1016/S0140-6736(22)01272-7.
View
11.
Almeida R, Lyons D
. On Myelinated Axon Plasticity and Neuronal Circuit Formation and Function. J Neurosci. 2017; 37(42):10023-10034.
PMC: 6596541.
DOI: 10.1523/JNEUROSCI.3185-16.2017.
View
12.
Han S, Gim Y, Jang E, Hur E
. Functions and dysfunctions of oligodendrocytes in neurodegenerative diseases. Front Cell Neurosci. 2023; 16:1083159.
PMC: 9807813.
DOI: 10.3389/fncel.2022.1083159.
View
13.
Wang J, Ho W, Lim K, Feng J, Tucker-Kellogg G, Nave K
. Cell-autonomous requirement of TDP-43, an ALS/FTD signature protein, for oligodendrocyte survival and myelination. Proc Natl Acad Sci U S A. 2018; 115(46):E10941-E10950.
PMC: 6243235.
DOI: 10.1073/pnas.1809821115.
View
14.
Lorente Pons A, Higginbottom A, Cooper-Knock J, Alrafiah A, Alofi E, Kirby J
. Oligodendrocyte pathology exceeds axonal pathology in white matter in human amyotrophic lateral sclerosis. J Pathol. 2020; 251(3):262-271.
DOI: 10.1002/path.5455.
View
15.
Fatima M, Tan R, Halliday G, Kril J
. Spread of pathology in amyotrophic lateral sclerosis: assessment of phosphorylated TDP-43 along axonal pathways. Acta Neuropathol Commun. 2015; 3:47.
PMC: 4517552.
DOI: 10.1186/s40478-015-0226-y.
View
16.
Tang X, Toro A, T G S, Gao J, Chalk J, Oskarsson B
. Divergence, Convergence, and Therapeutic Implications: A Cell Biology Perspective of C9ORF72-ALS/FTD. Mol Neurodegener. 2020; 15(1):34.
PMC: 7282082.
DOI: 10.1186/s13024-020-00383-7.
View
17.
Scekic-Zahirovic J, El Oussini H, Mersmann S, Drenner K, Wagner M, Sun Y
. Motor neuron intrinsic and extrinsic mechanisms contribute to the pathogenesis of FUS-associated amyotrophic lateral sclerosis. Acta Neuropathol. 2017; 133(6):887-906.
PMC: 5427169.
DOI: 10.1007/s00401-017-1687-9.
View
18.
Marian O, Teo J, Lee J, Song H, Kwok J, Landin-Romero R
. Disrupted myelin lipid metabolism differentiates frontotemporal dementia caused by GRN and C9orf72 gene mutations. Acta Neuropathol Commun. 2023; 11(1):52.
PMC: 10041703.
DOI: 10.1186/s40478-023-01544-7.
View
19.
Kahlson M, Colodner K
. Glial Tau Pathology in Tauopathies: Functional Consequences. J Exp Neurosci. 2016; 9(Suppl 2):43-50.
PMC: 4750898.
DOI: 10.4137/JEN.S25515.
View
20.
Thomas E, Fenton W, McGrath J, Horwich A
. Transfer of pathogenic and nonpathogenic cytosolic proteins between spinal cord motor neurons in vivo in chimeric mice. Proc Natl Acad Sci U S A. 2017; 114(15):E3139-E3148.
PMC: 5393223.
DOI: 10.1073/pnas.1701465114.
View