Global O-glycoproteome Enrichment and Analysis Enabled by a Combinatorial Enzymatic Workflow
Overview
Affiliations
A comprehensive analysis of site-specific protein O-glycosylation is hindered by the absence of a consensus O-glycosylation motif, the diversity of O-glycan structures, and the lack of a universal enzyme that cleaves attached O-glycans. Here, we report the development of a robust O-glycoproteomic workflow for analyzing complex biological samples by combining four different strategies: removal of N-glycans, complementary digestion using O-glycoprotease (IMPa) with/without another protease, glycopeptide enrichment, and mass spectrometry with fragmentation of glycopeptides using stepped collision energy. Using this workflow, we cataloged 474 O-glycopeptides on 189 O-glycosites derived from 79 O-glycoproteins from human plasma. These data revealed O-glycosylation of several abundant proteins that have not been previously reported. Because many of the proteins that contained unannotated O-glycosylation sites have been extensively studied, we wished to confirm glycosylation at these sites in a targeted fashion. Thus, we analyzed selected purified proteins (kininogen-1, fetuin-A, fibrinogen, apolipoprotein E, and plasminogen) in independent experiments and validated the previously unknown O-glycosites.
Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers.
Onigbinde S, Gutierrez Reyes C, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S Expert Rev Proteomics. 2024; 21(11):431-462.
PMID: 39439029 PMC: 11877277. DOI: 10.1080/14789450.2024.2418491.