» Articles » PMID: 38580869

The Role of Vasculature and Angiogenesis in Respiratory Diseases

Overview
Journal Angiogenesis
Publisher Springer
Specialty Hematology
Date 2024 Apr 5
PMID 38580869
Authors
Affiliations
Soon will be listed here.
Abstract

In European countries, nearly 10% of all hospital admissions are related to respiratory diseases, mainly chronic life-threatening diseases such as COPD, pulmonary hypertension, IPF or lung cancer. The contribution of blood vessels and angiogenesis to lung regeneration, remodeling and disease progression has been increasingly appreciated. The vascular supply of the lung shows the peculiarity of dual perfusion of the pulmonary circulation (vasa publica), which maintains a functional blood-gas barrier, and the bronchial circulation (vasa privata), which reveals a profiled capacity for angiogenesis (namely intussusceptive and sprouting angiogenesis) and alveolar-vascular remodeling by the recruitment of endothelial precursor cells. The aim of this review is to outline the importance of vascular remodeling and angiogenesis in a variety of non-neoplastic and neoplastic acute and chronic respiratory diseases such as lung infection, COPD, lung fibrosis, pulmonary hypertension and lung cancer.

Citing Articles

Respiratory long COVID in aged hamsters features impaired lung function post-exercise with bronchiolization and fibrosis.

Heydemann L, Ciurkiewicz M, Stork T, Zdora I, Hulskotter K, Gregor K Nat Commun. 2025; 16(1):2080.

PMID: 40021627 PMC: 11871369. DOI: 10.1038/s41467-025-57267-x.


Identification of Common Angiogenesis Marker Genes in Chronic Lung Diseases and Their Relationship with Immune Infiltration Based on Bioinformatics Approaches.

Liu L, Wang M, Yu S Biomedicines. 2025; 13(2).

PMID: 40002743 PMC: 11852874. DOI: 10.3390/biomedicines13020331.


Various Hydrogel Types as a Potential In Vitro Angiogenesis Model.

Radermacher C, Rohde A, Kucikas V, Buhl E, Wein S, Jonigk D Gels. 2024; 10(12).

PMID: 39727578 PMC: 11675469. DOI: 10.3390/gels10120820.


PCSK9 inhibitor alleviates experimental pulmonary fibrosis-induced pulmonary hypertension via attenuating epithelial-mesenchymal transition by suppressing Wnt/β-catenin signaling and .

Lin J, Pan Z, Sun J, Wang X, Yin D, Huo C Front Med (Lausanne). 2024; 11:1509168.

PMID: 39722825 PMC: 11668660. DOI: 10.3389/fmed.2024.1509168.


Fully automatic quantification of pulmonary fat attenuation volume by CT: an exploratory pilot study.

Salhofer L, Holtkamp M, Bonella F, Umutlu L, Wienker J, Westholter D Eur Radiol Exp. 2024; 8(1):139.

PMID: 39636527 PMC: 11621257. DOI: 10.1186/s41747-024-00536-z.


References
1.
Hermanns M, Unger R, Kehe K, Peters K, Kirkpatrick C . Lung epithelial cell lines in coculture with human pulmonary microvascular endothelial cells: development of an alveolo-capillary barrier in vitro. Lab Invest. 2004; 84(6):736-52. DOI: 10.1038/labinvest.3700081. View

2.
Voswinckel R, Motejl V, Fehrenbach A, Wegmann M, Mehling T, Fehrenbach H . Characterisation of post-pneumonectomy lung growth in adult mice. Eur Respir J. 2004; 24(4):524-32. DOI: 10.1183/09031936.04.10004904. View

3.
Ackermann M, Houdek J, Gibney B, Ysasi A, Wagner W, Belle J . Sprouting and intussusceptive angiogenesis in postpneumonectomy lung growth: mechanisms of alveolar neovascularization. Angiogenesis. 2013; 17(3):541-51. PMC: 4061467. DOI: 10.1007/s10456-013-9399-9. View

4.
Butler J, Loring S, Patz S, Tsuda A, Yablonskiy D, Mentzer S . Evidence for adult lung growth in humans. N Engl J Med. 2012; 367(3):244-7. PMC: 3422892. DOI: 10.1056/NEJMoa1203983. View

5.
Kotton D, Morrisey E . Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med. 2014; 20(8):822-32. PMC: 4229034. DOI: 10.1038/nm.3642. View