» Articles » PMID: 38572754

PubTator 3.0: an AI-powered Literature Resource for Unlocking Biomedical Knowledge

Overview
Specialty Biochemistry
Date 2024 Apr 4
PMID 38572754
Authors
Affiliations
Soon will be listed here.
Abstract

PubTator 3.0 (https://www.ncbi.nlm.nih.gov/research/pubtator3/) is a biomedical literature resource using state-of-the-art AI techniques to offer semantic and relation searches for key concepts like proteins, genetic variants, diseases and chemicals. It currently provides over one billion entity and relation annotations across approximately 36 million PubMed abstracts and 6 million full-text articles from the PMC open access subset, updated weekly. PubTator 3.0's online interface and API utilize these precomputed entity relations and synonyms to provide advanced search capabilities and enable large-scale analyses, streamlining many complex information needs. We showcase the retrieval quality of PubTator 3.0 using a series of entity pair queries, demonstrating that PubTator 3.0 retrieves a greater number of articles than either PubMed or Google Scholar, with higher precision in the top 20 results. We further show that integrating ChatGPT (GPT-4) with PubTator APIs dramatically improves the factuality and verifiability of its responses. In summary, PubTator 3.0 offers a comprehensive set of features and tools that allow researchers to navigate the ever-expanding wealth of biomedical literature, expediting research and unlocking valuable insights for scientific discovery.

Citing Articles

MedKG: enabling drug discovery through a unified biomedical knowledge graph.

Kumari M, Chauhan R, Garg P Mol Divers. 2025; .

PMID: 40085402 DOI: 10.1007/s11030-025-11164-z.


Pipeline to explore information on genome editing using large language models and genome editing meta-database.

Suzuki T, Bono H Database (Oxford). 2025; 2025.

PMID: 40056431 PMC: 11890094. DOI: 10.1093/database/baaf022.


A large language model framework for literature-based disease-gene association prediction.

Li P, Sun Y, Juan H, Chen C, Tsai H, Huang J Brief Bioinform. 2025; 26(1).

PMID: 39998433 PMC: 11851487. DOI: 10.1093/bib/bbaf070.


Integrating AI-powered text mining from PubTator into the manual curation workflow at the Comparative Toxicogenomics Database.

Wiegers T, Davis A, Wiegers J, Sciaky D, Barkalow F, Wyatt B Database (Oxford). 2025; 2025.

PMID: 39982792 PMC: 11844237. DOI: 10.1093/database/baaf013.


Assessing the performance of generative artificial intelligence in retrieving information against manually curated genetic and genomic data.

Poretsky E, Blake V, Andorf C, Sen T Database (Oxford). 2025; 2025.

PMID: 39963877 PMC: 11833239. DOI: 10.1093/database/baaf011.


References
1.
Jiang J, Yuan J, Hu Z, Zhang Y, Zhang T, Xu M . Systematic illumination of druggable genes in cancer genomes. Cell Rep. 2022; 38(8):110400. PMC: 8919705. DOI: 10.1016/j.celrep.2022.110400. View

2.
Islamaj R, Wei C, Cissel D, Miliaras N, Printseva O, Rodionov O . NLM-Gene, a richly annotated gold standard dataset for gene entities that addresses ambiguity and multi-species gene recognition. J Biomed Inform. 2021; 118:103779. PMC: 11037554. DOI: 10.1016/j.jbi.2021.103779. View

3.
Rzhetsky A, Seringhaus M, Gerstein M . Seeking a new biology through text mining. Cell. 2008; 134(1):9-13. PMC: 2735884. DOI: 10.1016/j.cell.2008.06.029. View

4.
Leaman R, Lu Z . TaggerOne: joint named entity recognition and normalization with semi-Markov Models. Bioinformatics. 2016; 32(18):2839-46. PMC: 5018376. DOI: 10.1093/bioinformatics/btw343. View

5.
Jin Q, Leaman R, Lu Z . Retrieve, Summarize, and Verify: How Will ChatGPT Affect Information Seeking from the Medical Literature?. J Am Soc Nephrol. 2023; 34(8):1302-1304. PMC: 10400098. DOI: 10.1681/ASN.0000000000000166. View