6.
Van Steendam C, Smets I, Skerlos S, Raskin L
. Improving anaerobic digestion via direct interspecies electron transfer requires development of suitable characterization methods. Curr Opin Biotechnol. 2019; 57:183-190.
DOI: 10.1016/j.copbio.2019.03.018.
View
7.
Qiao W, Takayanagi K, Li Q, Shofie M, Gao F, Dong R
. Thermodynamically enhancing propionic acid degradation by using sulfate as an external electron acceptor in a thermophilic anaerobic membrane reactor. Water Res. 2016; 106:320-329.
DOI: 10.1016/j.watres.2016.10.013.
View
8.
Guo Z, Liu W, Yang C, Gao L, Thangavel S, Wang L
. Computational and experimental analysis of organic degradation positively regulated by bioelectrochemistry in an anaerobic bioreactor system. Water Res. 2017; 125:170-179.
DOI: 10.1016/j.watres.2017.08.039.
View
9.
El Houari A, Ranchou-Peyruse M, Ranchou-Peyruse A, Dakdaki A, Guignard M, Idouhammou L
. Desulfobulbus oligotrophicus sp. nov., a sulfate-reducing and propionate-oxidizing bacterium isolated from a municipal anaerobic sewage sludge digester. Int J Syst Evol Microbiol. 2016; 67(2):275-281.
DOI: 10.1099/ijsem.0.001615.
View
10.
Huang C, Wang W, Sun X, Shen J, Wang L
. A novel acetogenic bacteria isolated from waste activated sludge and its potential application for enhancing anaerobic digestion performance. J Environ Manage. 2019; 255:109842.
DOI: 10.1016/j.jenvman.2019.109842.
View
11.
Ross D, Marshall C, Gulliver D, May H, Norman R
. Defining Genomic and Predicted Metabolic Features of the Genus. mSystems. 2020; 5(5).
PMC: 7498680.
DOI: 10.1128/mSystems.00277-20.
View
12.
Bekhit F, Farag S, Attia A
. Characterization of Immobilized Magnetic FeO Nanoparticles on Raoultella Ornithinolytica sp. and Its Application for Azo Dye Removal. Appl Biochem Biotechnol. 2022; 194(12):6068-6090.
PMC: 9708763.
DOI: 10.1007/s12010-022-04076-3.
View
13.
Zhao J, Zhang H, Guan D, Wang Y, Fu Z, Sun Y
. New insights into mechanism of emerging pollutant polybrominated diphenyl ether inhibiting sludge dark fermentation. Bioresour Technol. 2022; 368:128358.
DOI: 10.1016/j.biortech.2022.128358.
View
14.
Cetecioglu Z, Dolfing J, Taylor J, Purdy K, Eyice O
. COD/sulfate ratio does not affect the methane yield and microbial diversity in anaerobic digesters. Water Res. 2019; 155:444-454.
DOI: 10.1016/j.watres.2019.02.038.
View
15.
Chen J, Wade M, Dolfing J, Soyer O
. Increasing sulfate levels show a differential impact on synthetic communities comprising different methanogens and a sulfate reducer. J R Soc Interface. 2019; 16(154):20190129.
PMC: 6544901.
DOI: 10.1098/rsif.2019.0129.
View
16.
Zheng S, Liu F, Wang B, Zhang Y, Lovley D
. Capable of Direct Interspecies Electron Transfer. Environ Sci Technol. 2020; 54(23):15347-15354.
DOI: 10.1021/acs.est.0c05525.
View
17.
Rau J, Knackmuss H, Stolz A
. Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environ Sci Technol. 2002; 36(7):1497-504.
DOI: 10.1021/es010227+.
View
18.
Ozuolmez D, Na H, Lever M, Kjeldsen K, Jorgensen B, Plugge C
. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?. Front Microbiol. 2015; 6:492.
PMC: 4445324.
DOI: 10.3389/fmicb.2015.00492.
View
19.
Mo R, Guo W, Batstone D, Makinia J, Li Y
. Modifications to the anaerobic digestion model no. 1 (ADM1) for enhanced understanding and application of the anaerobic treatment processes - A comprehensive review. Water Res. 2023; 244:120504.
DOI: 10.1016/j.watres.2023.120504.
View
20.
Yin Q, Wu G
. Advances in direct interspecies electron transfer and conductive materials: Electron flux, organic degradation and microbial interaction. Biotechnol Adv. 2019; 37(8):107443.
DOI: 10.1016/j.biotechadv.2019.107443.
View