6.
Wang H, Shi W, Zeng D, Huang Q, Xie J, Wen H
. pH-activated, mitochondria-targeted, and redox-responsive delivery of paclitaxel nanomicelles to overcome drug resistance and suppress metastasis in lung cancer. J Nanobiotechnology. 2021; 19(1):152.
PMC: 8141180.
DOI: 10.1186/s12951-021-00895-4.
View
7.
Cai X, Liu M, Zhang C, Sun D, Zhai G
. pH-responsive copolymers based on pluronic P123-poly(β-amino ester): Synthesis, characterization and application of copolymer micelles. Colloids Surf B Biointerfaces. 2016; 142:114-122.
DOI: 10.1016/j.colsurfb.2016.02.033.
View
8.
Kalva N, Uthaman S, Augustine R, Jeon S, Huh K, Park I
. Photo- and pH-Responsive Polycarbonate Block Copolymer Prodrug Nanomicelles for Controlled Release of Doxorubicin. Macromol Biosci. 2020; 20(8):e2000118.
DOI: 10.1002/mabi.202000118.
View
9.
Chen R, Ma Z, Xiang Z, Xia Y, Shi Q, Wong S
. Hydrogen Peroxide and Glutathione Dual Redox-Responsive Nanoparticles for Controlled DOX Release. Macromol Biosci. 2019; 20(2):e1900331.
DOI: 10.1002/mabi.201900331.
View
10.
Mao J, Li Y, Wu T, Yuan C, Zeng B, Xu Y
. A Simple Dual-pH Responsive Prodrug-Based Polymeric Micelles for Drug Delivery. ACS Appl Mater Interfaces. 2016; 8(27):17109-17.
DOI: 10.1021/acsami.6b04247.
View
11.
Zhou Z, Zhang J, Chen Q, Luo Y, Xu F, Chen Y
. Temperature and Photo Dual-Stimuli Responsive Block Copolymer Self-Assembly Micelles for Cellular Controlled Drug Release. Macromol Biosci. 2020; 21(3):e2000291.
DOI: 10.1002/mabi.202000291.
View
12.
Zhang A, Miao K, Sun H, Deng C
. Tumor heterogeneity reshapes the tumor microenvironment to influence drug resistance. Int J Biol Sci. 2022; 18(7):3019-3033.
PMC: 9066118.
DOI: 10.7150/ijbs.72534.
View
13.
Bai T, Shao D, Chen J, Li Y, Xu B, Kong J
. pH-responsive dithiomaleimide-amphiphilic block copolymer for drug delivery and cellular imaging. J Colloid Interface Sci. 2019; 552:439-447.
DOI: 10.1016/j.jcis.2019.05.074.
View
14.
Dai Y, Xu C, Sun X, Chen X
. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev. 2017; 46(12):3830-3852.
PMC: 5521825.
DOI: 10.1039/c6cs00592f.
View
15.
Du J, Li H, Wang J
. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine. Acc Chem Res. 2018; 51(11):2848-2856.
DOI: 10.1021/acs.accounts.8b00195.
View
16.
Kuppusamy P, Li H, Ilangovan G, Cardounel A, Zweier J, Yamada K
. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res. 2002; 62(1):307-12.
View
17.
Boedtkjer E, Pedersen S
. The Acidic Tumor Microenvironment as a Driver of Cancer. Annu Rev Physiol. 2019; 82:103-126.
DOI: 10.1146/annurev-physiol-021119-034627.
View
18.
Yang Q, Tan L, He C, Liu B, Xu Y, Zhu Z
. Redox-responsive micelles self-assembled from dynamic covalent block copolymers for intracellular drug delivery. Acta Biomater. 2015; 17:193-200.
DOI: 10.1016/j.actbio.2015.01.044.
View
19.
Xu Z, Pan C, Yuan W
. Light-enhanced hypoxia-responsive and azobenzene cleavage-triggered size-shrinkable micelles for synergistic photodynamic therapy and chemotherapy. Biomater Sci. 2020; 8(12):3348-3358.
DOI: 10.1039/d0bm00328j.
View
20.
Ke W, Zha Z, Mukerabigwi J, Chen W, Wang Y, He C
. Matrix Metalloproteinase-Responsive Multifunctional Peptide-Linked Amphiphilic Block Copolymers for Intelligent Systemic Anticancer Drug Delivery. Bioconjug Chem. 2017; 28(8):2190-2198.
DOI: 10.1021/acs.bioconjchem.7b00330.
View