» Articles » PMID: 3856889

In Vivo Solvent-suppressed Localized Hydrogen Nuclear Magnetic Resonance Spectroscopy: a Window to Metabolism?

Overview
Specialty Science
Date 1985 Apr 1
PMID 3856889
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Solvent-suppression NMR techniques are combined with a pulsed magnetic field gradient and surface coil detection method of spatial localization. The result is a technique that enables observation of metabolites in the hydrogen (1H) NMR chemical-shift spectra from preselected disk-shaped volumes of biological tissue in vivo. Localized spectra are recorded from the normal human brain and forearm and from a dog in acquisition periods of 2 s using a 1.5-T imaging/spectroscopy system. This is several hundred-fold faster than acquiring similar state-of-the-art 31P NMR spectra of brain metabolites in vivo. Spectroscopy experiments are followed by conventional surface coil imaging sequences to precisely define the selected volume. Contamination of spectra by lipid resonances is a problem.

Citing Articles

Concentric Ring Trajectory Sampling With k-Space Reordering Enables Assessment of Tissue-Specific T and T Relaxation for H-Labeled Substrates in the Human Brain at 7 T.

Bader V, Strasser B, Bogner W, Hingerl L, Frese S, Duguid A NMR Biomed. 2024; 38(2):e5311.

PMID: 39702927 PMC: 11659634. DOI: 10.1002/nbm.5311.


Revolutionizing pediatric neuroimaging: the era of CT, MRI, and beyond.

Ryan M, Jaju A Childs Nerv Syst. 2023; 39(10):2583-2592.

PMID: 37380927 DOI: 10.1007/s00381-023-06041-9.


Baseline Correction of the Human H MRS(I) Spectrum Using T* Selective Differential Operators in the Frequency Domain.

Choi S, Ryu Y, Chung J Metabolites. 2022; 12(12).

PMID: 36557294 PMC: 9787948. DOI: 10.3390/metabo12121257.


Recent advances in imaging techniques of renal masses.

Aggarwal A, Das C, Sharma S World J Radiol. 2022; 14(6):137-150.

PMID: 35978979 PMC: 9258310. DOI: 10.4329/wjr.v14.i6.137.


Magnetism of materials: theory and practice in magnetic resonance imaging.

Gaeta M, Cavallaro M, Vinci S, Mormina E, Blandino A, Marino M Insights Imaging. 2021; 12(1):179.

PMID: 34862955 PMC: 8643382. DOI: 10.1186/s13244-021-01125-z.


References
1.
Behar K, den Hollander J, Stromski M, Ogino T, Shulman R, Petroff O . High-resolution 1H nuclear magnetic resonance study of cerebral hypoxia in vivo. Proc Natl Acad Sci U S A. 1983; 80(16):4945-8. PMC: 384164. DOI: 10.1073/pnas.80.16.4945. View

2.
Bottomley P, Hart Jr H, Edelstein W, Schenck J, Smith L, Leue W . Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1.5 Tesla. Radiology. 1984; 150(2):441-6. DOI: 10.1148/radiology.150.2.6691099. View

3.
Ugurbil K, Petein M, Maidan R, Michurski S, Cohn J, From A . High resolution proton NMR studies of perfused rat hearts. FEBS Lett. 1984; 167(1):73-8. DOI: 10.1016/0014-5793(84)80835-2. View

4.
Decorps M, Lebas J, Leviel J, Confort S, Remy C, Benabid A . Analysis of brain metabolism changes induced by acute potassium cyanide intoxication by 31P NMR in vivo using chronically implanted surface coils. FEBS Lett. 1984; 168(1):1-6. DOI: 10.1016/0014-5793(84)80195-7. View

5.
Koretsky A, Wang S, Klein M, James T, Weiner M . 31P NMR spectroscopy of rat organs, in situ, using chronically implanted radiofrequency coils. Proc Natl Acad Sci U S A. 1983; 80(24):7491-5. PMC: 389977. DOI: 10.1073/pnas.80.24.7491. View