» Articles » PMID: 38567245

Efficient Telecom-to-visible Spectral Translation Through Ultra-low Power Nonlinear Nanophotonics

Overview
Journal Nat Photonics
Date 2024 Apr 3
PMID 38567245
Authors
Affiliations
Soon will be listed here.
Abstract

The ability to spectrally translate lightwave signals in a compact, low-power platform is at the heart of the promise of nonlinear nanophotonic technologies. For example, a device to link the telecommunications band with visible and short near-infrared wavelengths can enable a connection between high-performance chip-integrated lasers based on scalable nanofabrication technology with atomic systems used for time and frequency metrology. While second-order nonlinear () systems are the natural approach for bridging such large spectral gaps, here we show that third-order nonlinear () systems, despite their typically much weaker nonlinear response, can realize spectral translation with unprecedented performance. By combining resonant enhancement with nanophotonic mode engineering in a silicon nitride microring resonator, we demonstrate efficient spectral translation of a continuous-wave signal from the telecom band (≈ 1550 nm) to the visible band (≈ 650 nm) through cavity-enhanced four-wave mixing. We achieve such translation over a wide spectral range >250 THz with a translation efficiency of (30.1 ± 2.8) % and using an ultra-low pump power of (329 ± 13) W. The translation efficiency projects to (274 ± 28) % at 1 mW and is more than an order of magnitude larger than what has been achieved in current nanophotonic devices.

Citing Articles

Nonlinear mid-infrared meta-membranes.

Sartorello G, Bocanegra J, Knez D, Lukin D, Yang J, Vuckovic J Nanophotonics. 2024; 13(18):3395-3402.

PMID: 39634836 PMC: 11501238. DOI: 10.1515/nanoph-2024-0203.


Phase-matched five-wave mixing in zinc oxide microwire.

Cui K, Zhang T, Rao T, Zhang X, Zhang S, Xu H Nanophotonics. 2024; 13(18):3403-3409.

PMID: 39634831 PMC: 11501356. DOI: 10.1515/nanoph-2024-0129.


A Chip-Scale Optical Frequency Reference for the Telecommunication Band Based on Acetylene.

Zektzer R, Hummon M, Stern L, Sebbag Y, Barash Y, Mazurski N Laser Photon Rev. 2024; 14(6).

PMID: 38847002 PMC: 11155473. DOI: 10.1002/lpor.201900414.


Efficient photo-induced second harmonic generation in silicon nitride photonics.

Lu X, Moille G, Rao A, Westly D, Srinivasan K Nat Photonics. 2024; 15(2).

PMID: 38496726 PMC: 10941289. DOI: 10.1038/s41566-020-00708-4.


Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation.

Wang W, Lu P, Vinod A, Turan D, McMillan J, Liu H Nat Commun. 2022; 13(1):5123.

PMID: 36045124 PMC: 9433451. DOI: 10.1038/s41467-022-32739-6.


References
1.
Li Q, Briles T, Westly D, Drake T, Stone J, Ilic B . Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica. 2017; 4(2):193-203. PMC: 5460676. DOI: 10.1364/OPTICA.4.000193. View

2.
Mariani S, Andronico A, Lemaitre A, Favero I, Ducci S, Leo G . Second-harmonic generation in AlGaAs microdisks in the telecom range. Opt Lett. 2014; 39(10):3062-5. DOI: 10.1364/OL.39.003062. View

3.
Balram K, Westly D, Davanco M, Grutter K, Li Q, Michels T . The Nanolithography Toolbox. J Res Natl Inst Stand Technol. 2021; 121:464-475. PMC: 7339749. DOI: 10.6028/jres.121.024. View

4.
Spencer D, Drake T, Briles T, Stone J, Sinclair L, Fredrick C . An optical-frequency synthesizer using integrated photonics. Nature. 2018; 557(7703):81-85. DOI: 10.1038/s41586-018-0065-7. View

5.
Okawachi Y, Saha K, Levy J, Wen Y, Lipson M, Gaeta A . Octave-spanning frequency comb generation in a silicon nitride chip. Opt Lett. 2011; 36(17):3398-400. DOI: 10.1364/OL.36.003398. View