6.
Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W
. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol. 2015; 33(4):408-14.
DOI: 10.1038/nbt.3096.
View
7.
Craine E, Davies A, Packer D, Miller N, Schmockel S, Spalding E
. A comprehensive characterization of agronomic and end-use quality phenotypes across a quinoa world core collection. Front Plant Sci. 2023; 14:1101547.
PMC: 9978749.
DOI: 10.3389/fpls.2023.1101547.
View
8.
Zhang T, Gu M, Liu Y, Lv Y, Zhou L, Lu H
. Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing. BMC Genomics. 2017; 18(1):685.
PMC: 5584319.
DOI: 10.1186/s12864-017-4093-8.
View
9.
El-Moneim D, ELsarag E, Aloufi S, El-Azraq A, Alshamrani S, Safhi F
. Quinoa ( Willd.): Genetic Diversity According to ISSR and SCoT Markers, Relative Gene Expression, and Morpho-Physiological Variation under Salinity Stress. Plants (Basel). 2021; 10(12).
PMC: 8707205.
DOI: 10.3390/plants10122802.
View
10.
Vega-Galvez A, Miranda M, Vergara J, Uribe E, Puente L, Martinez E
. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J Sci Food Agric. 2010; 90(15):2541-7.
DOI: 10.1002/jsfa.4158.
View
11.
Carrillo-Perdomo E, Vidal A, Kreplak J, Duborjal H, Leveugle M, Duarte J
. Development of new genetic resources for faba bean (Vicia faba L.) breeding through the discovery of gene-based SNP markers and the construction of a high-density consensus map. Sci Rep. 2020; 10(1):6790.
PMC: 7176738.
DOI: 10.1038/s41598-020-63664-7.
View
12.
Pritchard J, Stephens M, Donnelly P
. Inference of population structure using multilocus genotype data. Genetics. 2000; 155(2):945-59.
PMC: 1461096.
DOI: 10.1093/genetics/155.2.945.
View
13.
Maldonado-Taipe N, Barbier F, Schmid K, Jung C, Emrani N
. High-Density Mapping of Quantitative Trait Loci Controlling Agronomically Important Traits in Quinoa ( Willd.). Front Plant Sci. 2022; 13:916067.
PMC: 9261497.
DOI: 10.3389/fpls.2022.916067.
View
14.
Varshney R, Saxena R, Upadhyaya H, Khan A, Yu Y, Kim C
. Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat Genet. 2017; 49(7):1082-1088.
DOI: 10.1038/ng.3872.
View
15.
Wu D, Liang Z, Yan T, Xu Y, Xuan L, Tang J
. Whole-Genome Resequencing of a Worldwide Collection of Rapeseed Accessions Reveals the Genetic Basis of Ecotype Divergence. Mol Plant. 2018; 12(1):30-43.
DOI: 10.1016/j.molp.2018.11.007.
View
16.
Flint-Garcia S, Thornsberry J, Buckler 4th E
. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol. 2003; 54:357-74.
DOI: 10.1146/annurev.arplant.54.031902.134907.
View
17.
Evanno G, Regnaut S, Goudet J
. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005; 14(8):2611-20.
DOI: 10.1111/j.1365-294X.2005.02553.x.
View
18.
Patiranage D, Rey E, Emrani N, Wellman G, Schmid K, Schmockel S
. Genome-wide association study in quinoa reveals selection pattern typical for crops with a short breeding history. Elife. 2022; 11.
PMC: 9388097.
DOI: 10.7554/eLife.66873.
View
19.
Bradbury P, Zhang Z, Kroon D, Casstevens T, Ramdoss Y, Buckler E
. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007; 23(19):2633-5.
DOI: 10.1093/bioinformatics/btm308.
View
20.
Madl T, Sterk H, Mittelbach M, Rechberger G
. Tandem mass spectrometric analysis of a complex triterpene saponin mixture of Chenopodium quinoa. J Am Soc Mass Spectrom. 2006; 17(6):795-806.
DOI: 10.1016/j.jasms.2006.02.013.
View