» Articles » PMID: 38561367

Advances in Engineered Macrophages: A New Frontier in Cancer Immunotherapy

Overview
Journal Cell Death Dis
Date 2024 Apr 1
PMID 38561367
Authors
Affiliations
Soon will be listed here.
Abstract

Macrophages, as pivotal cells within the tumour microenvironment, significantly influence the impact of and reactions to treatments for solid tumours. The rapid evolution of bioengineering technology has revealed the vast potential of engineered macrophages in immunotherapy, disease diagnosis, and tissue engineering. Given this landscape, the goal of harnessing and innovating macrophages as a novel strategy for solid tumour immunotherapy cannot be overstated. The diverse strategies for engineered macrophages in the realm of cancer immunotherapy, encompassing macrophage drug delivery systems, chimeric antigen receptor macrophage therapy, and synergistic treatment approaches involving bacterial outer membrane vesicles and macrophages, are meticulously examined in this review. These methodologies are designed to enhance the therapeutic efficacy of macrophages against solid tumours, particularly those that are drug-resistant and metastatic. Collectively, these immunotherapies are poised to supplement and refine current solid tumour treatment paradigms, thus heralding a new frontier in the fight against malignant tumours.

Citing Articles

Are monocytes a preferable option to develop myeloid cell-based therapies for solid tumors?.

Bhatia D, Dolcetti R, Mazzieri R J Exp Clin Cancer Res. 2025; 44(1):98.

PMID: 40089746 DOI: 10.1186/s13046-025-03359-x.


Bacterial-Mediated In Situ Engineering of Tumour-Associated Macrophages for Cancer Immunotherapy.

Kuhl G, Tangney M Cancers (Basel). 2025; 17(5).

PMID: 40075571 PMC: 11899205. DOI: 10.3390/cancers17050723.


An adoptive cell therapy with TREM2-overexpressing macrophages mitigates the transition from acute kidney injury to chronic kidney disease.

Zhang Y, Liu Y, Luo S, Liang H, Guo C, Du Y Clin Transl Med. 2025; 15(3):e70252.

PMID: 40000418 PMC: 11859120. DOI: 10.1002/ctm2.70252.


Chimeric Antigen Receptor Cell Therapy: Empowering Treatment Strategies for Solid Tumors.

Jaing T, Hsiao Y, Wang Y Curr Issues Mol Biol. 2025; 47(2).

PMID: 39996811 PMC: 11854309. DOI: 10.3390/cimb47020090.


How to Use Macrophages Against Cancer.

Kuznicki J, Janicka N, Bialynicka-Birula B, Kuznicki W, Chorazyczewska H, Deszcz I Cells. 2024; 13(23).

PMID: 39682696 PMC: 11639767. DOI: 10.3390/cells13231948.


References
1.
Chen C, Jing W, Chen Y, Wang G, Abdalla M, Gao L . Intracavity generation of glioma stem cell-specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy. Sci Transl Med. 2022; 14(656):eabn1128. DOI: 10.1126/scitranslmed.abn1128. View

2.
Ikehara Y, Niwa T, Biao L, Ikehara S, Ohashi N, Kobayashi T . A carbohydrate recognition-based drug delivery and controlled release system using intraperitoneal macrophages as a cellular vehicle. Cancer Res. 2006; 66(17):8740-8. DOI: 10.1158/0008-5472.CAN-06-0470. View

3.
Choi J, Kim H, Ju E, Jung J, Park J, Chung H . Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials. 2012; 33(16):4195-203. DOI: 10.1016/j.biomaterials.2012.02.022. View

4.
Roszer T . Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators Inflamm. 2015; 2015:816460. PMC: 4452191. DOI: 10.1155/2015/816460. View

5.
Baslan T, Hicks J . Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat Rev Cancer. 2017; 17(9):557-569. DOI: 10.1038/nrc.2017.58. View