6.
Liu N, Chee M, Qi Foo M, Pong J, Guo D, Koh Z
. Heart rate n-variability (HRnV) measures for prediction of mortality in sepsis patients presenting at the emergency department. PLoS One. 2021; 16(8):e0249868.
PMC: 8405012.
DOI: 10.1371/journal.pone.0249868.
View
7.
Carrara M, Ferrario M, Pinto B, Herpain A
. The autonomic nervous system in septic shock and its role as a future therapeutic target: a narrative review. Ann Intensive Care. 2021; 11(1):80.
PMC: 8128952.
DOI: 10.1186/s13613-021-00869-7.
View
8.
Etemadi M, Inan O, Wiard R, Kovacs G, Giovangrandi L
. Non-invasive assessment of cardiac contractility on a weighing scale. Annu Int Conf IEEE Eng Med Biol Soc. 2009; 2009:6773-6.
DOI: 10.1109/IEMBS.2009.5332508.
View
9.
Scherpf M, Grasser F, Malberg H, Zaunseder S
. Predicting sepsis with a recurrent neural network using the MIMIC III database. Comput Biol Med. 2019; 113:103395.
DOI: 10.1016/j.compbiomed.2019.103395.
View
10.
Kounalakis S, Geladas N
. The role of pulse transit time as an index of arterial stiffness during exercise. Cardiovasc Eng. 2009; 9(3):92-7.
DOI: 10.1007/s10558-009-9081-4.
View
11.
Subbe C, Slater A, Menon D, Gemmell L
. Validation of physiological scoring systems in the accident and emergency department. Emerg Med J. 2006; 23(11):841-5.
PMC: 2464409.
DOI: 10.1136/emj.2006.035816.
View
12.
Smith G, Prytherch D, Meredith P, Schmidt P, Featherstone P
. The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. Resuscitation. 2013; 84(4):465-70.
DOI: 10.1016/j.resuscitation.2012.12.016.
View
13.
Brower R, Matthay M, Morris A, Schoenfeld D, Thompson B, Wheeler A
. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000; 342(18):1301-8.
DOI: 10.1056/NEJM200005043421801.
View
14.
Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov P, Mark R
. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000; 101(23):E215-20.
DOI: 10.1161/01.cir.101.23.e215.
View
15.
van Wyk F, Khojandi A, Mohammed A, Begoli E, Davis R, Kamaleswaran R
. A minimal set of physiomarkers in continuous high frequency data streams predict adult sepsis onset earlier. Int J Med Inform. 2019; 122:55-62.
DOI: 10.1016/j.ijmedinf.2018.12.002.
View
16.
Dellinger R, Carlet J, Masur H, Gerlach H, Calandra T, Cohen J
. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Intensive Care Med. 2004; 30(4):536-55.
DOI: 10.1007/s00134-004-2210-z.
View
17.
Wee B, Lee J, Mok Y, Chong S
. A narrative review of heart rate and variability in sepsis. Ann Transl Med. 2020; 8(12):768.
PMC: 7333166.
DOI: 10.21037/atm-20-148.
View
18.
Seymour C, Gesten F, Prescott H, Friedrich M, Iwashyna T, Phillips G
. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. N Engl J Med. 2017; 376(23):2235-2244.
PMC: 5538258.
DOI: 10.1056/NEJMoa1703058.
View
19.
Levy M, Evans L, Rhodes A
. The Surviving Sepsis Campaign Bundle: 2018 update. Intensive Care Med. 2018; 44(6):925-928.
DOI: 10.1007/s00134-018-5085-0.
View
20.
Burdick H, Pino E, Gabel-Comeau D, Gu C, Roberts J, Le S
. Validation of a machine learning algorithm for early severe sepsis prediction: a retrospective study predicting severe sepsis up to 48 h in advance using a diverse dataset from 461 US hospitals. BMC Med Inform Decis Mak. 2020; 20(1):276.
PMC: 7590695.
DOI: 10.1186/s12911-020-01284-x.
View