Development of a Hybrid Bio-purification Process of Lactic Acid Solutions Employing an Engineered E. Coli Strain in a Membrane Bioreactor
Overview
Affiliations
Background: A potential alternative to lactic acid production through sugar fermentation is its recovery from grass silage leachate. The separation and purification of lactic acid from fermentation broths remain a key issue, as it amounts to up to 80% of its industrial production cost. In this study, a genetically engineered E. coli strain (A1:ldhA), that cannot catabolize lactic acid, has been used to selectively remove impurities from a synthetic medium comprising typical components (i.e., glucose and acetic acid) of green grass silage leachate. A systematic approach has been followed to provide a proof-of-concept for a bio-purification process of lactic acid solutions in a membrane bioreactor operating in semi-continuous mode.
Results: The synthetic medium composition was initially optimized in shake-flasks experiments, followed by scale-up in bench-scale bioreactor. Complete (i.e., 100%) and 60.4% removal for glucose and acetic acid, respectively, has been achieved in batch bioreactor experiments with a synthetic medium comprising 0.5 g/L glucose and 0.5 g/L acetic acid as carbon sources, and 10 g/L lactic acid; no lactic acid catabolism was observed in all batch fermentation tests. Afterwards, a hybrid biotechnological process combining semi-continuous bioreactor fermentation and ultrafiltration membrane separation (membrane bioreactor) was applied to in-situ separate purified medium from the active cells. The process was assessed under different semi-continuous operating conditions, resulting in a bacteria-free effluent and 100% glucose and acetic acid depletion, with no lactic acid catabolism, thus increasing the purity of the synthetic lactic acid solution.
Conclusions: The study clearly demonstrated that a bio-purification process for lactic acid employing the engineered E. coli strain cultivated in a membrane bioreactor is a technically feasible concept, paving the way for further technological advancement.
Nastouli A, Moschona A, Bizirtsakis P, Sweeney J, Angelidaki I, Harasek M Bioengineering (Basel). 2024; 11(5).
PMID: 38790280 PMC: 11118208. DOI: 10.3390/bioengineering11050412.