6.
Akenroye A, Segal J, Zhou G, Foer D, Li L, Alexander G
. Comparative effectiveness of omalizumab, mepolizumab, and dupilumab in asthma: A target trial emulation. J Allergy Clin Immunol. 2023; 151(5):1269-1276.
PMC: 10164684.
DOI: 10.1016/j.jaci.2023.01.020.
View
7.
Danaei G, Tavakkoli M, Hernan M
. Bias in observational studies of prevalent users: lessons for comparative effectiveness research from a meta-analysis of statins. Am J Epidemiol. 2012; 175(4):250-62.
PMC: 3271813.
DOI: 10.1093/aje/kwr301.
View
8.
Czaja A, Ross M, Liu W, Fiks A, Localio R, Wasserman R
. Electronic health record (EHR) based postmarketing surveillance of adverse events associated with pediatric off-label medication use: A case study of short-acting beta-2 agonists and arrhythmias. Pharmacoepidemiol Drug Saf. 2018; 27(7):815-822.
DOI: 10.1002/pds.4562.
View
9.
Ling Y, Upadhyaya P, Chen L, Jiang X, Kim Y
. Emulate randomized clinical trials using heterogeneous treatment effect estimation for personalized treatments: Methodology review and benchmark. J Biomed Inform. 2022; 137:104256.
PMC: 9845190.
DOI: 10.1016/j.jbi.2022.104256.
View
10.
Shi J, Norgeot B
. Learning Causal Effects From Observational Data in Healthcare: A Review and Summary. Front Med (Lausanne). 2022; 9:864882.
PMC: 9300826.
DOI: 10.3389/fmed.2022.864882.
View
11.
Li X, Young J, Toh S
. Estimating Effects of Dynamic Treatment Strategies in Pharmacoepidemiologic Studies with Time-varying Confounding: A Primer. Curr Epidemiol Rep. 2017; 4(4):288-297.
PMC: 5710813.
DOI: 10.1007/s40471-017-0124-x.
View
12.
Hernan M
. How to estimate the effect of treatment duration on survival outcomes using observational data. BMJ. 2018; 360:k182.
PMC: 6889975.
DOI: 10.1136/bmj.k182.
View
13.
Kent D, Nelson J, Pittas A, Colangelo F, Koenig C, van Klaveren D
. An Electronic Health Record-Compatible Model to Predict Personalized Treatment Effects From the Diabetes Prevention Program: A Cross-Evidence Synthesis Approach Using Clinical Trial and Real-World Data. Mayo Clin Proc. 2021; 97(4):703-715.
DOI: 10.1016/j.mayocp.2021.09.012.
View
14.
Enticott J, Johnson A, Teede H
. Learning health systems using data to drive healthcare improvement and impact: a systematic review. BMC Health Serv Res. 2021; 21(1):200.
PMC: 7932903.
DOI: 10.1186/s12913-021-06215-8.
View
15.
Zuo H, Yu L, Campbell S, Yamamoto S, Yuan Y
. The implementation of target trial emulation for causal inference: a scoping review. J Clin Epidemiol. 2023; 162:29-37.
DOI: 10.1016/j.jclinepi.2023.08.003.
View
16.
Greenland S, Pearl J, Robins J
. Causal diagrams for epidemiologic research. Epidemiology. 1999; 10(1):37-48.
View
17.
Petersen M, Porter K, Gruber S, Wang Y, van der Laan M
. Diagnosing and responding to violations in the positivity assumption. Stat Methods Med Res. 2010; 21(1):31-54.
PMC: 4107929.
DOI: 10.1177/0962280210386207.
View
18.
Danaei G, Garcia Rodriguez L, Cantero O, Logan R, Hernan M
. Observational data for comparative effectiveness research: an emulation of randomised trials of statins and primary prevention of coronary heart disease. Stat Methods Med Res. 2011; 22(1):70-96.
PMC: 3613145.
DOI: 10.1177/0962280211403603.
View
19.
Liao K, Cai T, Savova G, Murphy S, Karlson E, Ananthakrishnan A
. Development of phenotype algorithms using electronic medical records and incorporating natural language processing. BMJ. 2015; 350:h1885.
PMC: 4707569.
DOI: 10.1136/bmj.h1885.
View
20.
Denny J, Ritchie M, Basford M, Pulley J, Bastarache L, Brown-Gentry K
. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics. 2010; 26(9):1205-10.
PMC: 2859132.
DOI: 10.1093/bioinformatics/btq126.
View