6.
Libkind D, Brizzio S, Ruffini A, Gadanho M, van Broock M, Sampaio J
. Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie Van Leeuwenhoek. 2003; 84(4):313-22.
DOI: 10.1023/a:1026058116545.
View
7.
Cousin F, Le Guellec R, Schlusselhuber M, Dalmasso M, Laplace J, Cretenet M
. Microorganisms in Fermented Apple Beverages: Current Knowledge and Future Directions. Microorganisms. 2017; 5(3).
PMC: 5620630.
DOI: 10.3390/microorganisms5030039.
View
8.
Chalvantzi I, Banilas G, Tassou C, Nisiotou A
. Biogeographical Regionalization of Wine Yeast Communities in Greece and Environmental Drivers of Species Distribution at a Local Scale. Front Microbiol. 2021; 12:705001.
PMC: 8278314.
DOI: 10.3389/fmicb.2021.705001.
View
9.
Cray J, Bell A, Bhaganna P, Mswaka A, Timson D, Hallsworth J
. The biology of habitat dominance; can microbes behave as weeds?. Microb Biotechnol. 2013; 6(5):453-92.
PMC: 3918151.
DOI: 10.1111/1751-7915.12027.
View
10.
Connell L, Redman R, Rodriguez R, Barrett A, Iszard M, Fonseca A
. Dioszegia antarctica sp. nov. and Dioszegia cryoxerica sp. nov., psychrophilic basidiomycetous yeasts from polar desert soils in Antarctica. Int J Syst Evol Microbiol. 2009; 60(Pt 6):1466-1472.
DOI: 10.1099/ijs.0.015412-0.
View
11.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K
. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 2018; 35(6):1547-1549.
PMC: 5967553.
DOI: 10.1093/molbev/msy096.
View
12.
Barata A, Malfeito-Ferreira M, Loureiro V
. The microbial ecology of wine grape berries. Int J Food Microbiol. 2011; 153(3):243-59.
DOI: 10.1016/j.ijfoodmicro.2011.11.025.
View
13.
Lorenzini M, Simonato B, Zapparoli G
. Yeast species diversity in apple juice for cider production evidenced by culture-based method. Folia Microbiol (Praha). 2018; 63(6):677-684.
DOI: 10.1007/s12223-018-0609-0.
View
14.
Neubert K, Mendgen K, Brinkmann H, Wirsel S
. Only a few fungal species dominate highly diverse mycofloras associated with the common reed. Appl Environ Microbiol. 2006; 72(2):1118-28.
PMC: 1392925.
DOI: 10.1128/AEM.72.2.1118-1128.2006.
View
15.
Zhu L, Li T, Xu X, Shi X, Wang B
. Succession of Fungal Communities at Different Developmental Stages of Cabernet Sauvignon Grapes From an Organic Vineyard in Xinjiang. Front Microbiol. 2021; 12:718261.
PMC: 8439140.
DOI: 10.3389/fmicb.2021.718261.
View
16.
Maksimova I, Iurkov A, Chernov I
. [Spacial structure of epiphytic yeast communities on fruits of Sorbus aucuparia L]. Izv Akad Nauk Ser Biol. 2010; (6):721-7.
View
17.
Camatti-Sartori V, da Silva-Ribeiro R, Valdebenito-Sanhueza R, Pagnocca F, Echeverrigaray S, Azevedo J
. Endophytic yeasts and filamentous fungi associated with southern Brazilian apple (Malus domestica) orchards subjected to conventional, integrated or organic cultivation. J Basic Microbiol. 2005; 45(5):397-402.
DOI: 10.1002/jobm.200410547.
View
18.
Janisiewicz W, Jurick 2nd W, Peter K, Kurtzman C, Buyer J
. Yeasts associated with plums and their potential for controlling brown rot after harvest. Yeast. 2014; 31(6):207-18.
DOI: 10.1002/yea.3009.
View
19.
Abdelfattah A, Wisniewski M, Droby S, Schena L
. Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Hortic Res. 2016; 3:16047.
PMC: 5051542.
DOI: 10.1038/hortres.2016.47.
View
20.
Moll J, Hoppe B, Konig S, Wubet T, Buscot F, Kruger D
. Spatial Distribution of Fungal Communities in an Arable Soil. PLoS One. 2016; 11(2):e0148130.
PMC: 4740416.
DOI: 10.1371/journal.pone.0148130.
View