» Articles » PMID: 38545114

Overcoming Cold Tumors: a Combination Strategy of Immune Checkpoint Inhibitors

Overview
Journal Front Immunol
Date 2024 Mar 28
PMID 38545114
Authors
Affiliations
Soon will be listed here.
Abstract

Immune Checkpoint Inhibitors (ICIs) therapy has advanced significantly in treating malignant tumors, though most 'cold' tumors show no response. This resistance mainly arises from the varied immune evasion mechanisms. Hence, understanding the transformation from 'cold' to 'hot' tumors is essential in developing effective cancer treatments. Furthermore, tumor immune profiling is critical, requiring a range of diagnostic techniques and biomarkers for evaluation. The success of immunotherapy relies on T cells' ability to recognize and eliminate tumor cells. In 'cold' tumors, the absence of T cell infiltration leads to the ineffectiveness of ICI therapy. Addressing these challenges, especially the impairment in T cell activation and homing, is crucial to enhance ICI therapy's efficacy. Concurrently, strategies to convert 'cold' tumors into 'hot' ones, including boosting T cell infiltration and adoptive therapies such as T cell-recruiting bispecific antibodies and Chimeric Antigen Receptor (CAR) T cells, are under extensive exploration. Thus, identifying key factors that impact tumor T cell infiltration is vital for creating effective treatments targeting 'cold' tumors.

Citing Articles

Advancements in Melanoma Treatment: A Review of PD-1 Inhibitors, T-VEC, mRNA Vaccines, and Tumor-Infiltrating Lymphocyte Therapy in an Evolving Landscape of Immunotherapy.

Mehta A, Motavaf M, Nebo I, Luyten S, Osei-Opare K, Gru A J Clin Med. 2025; 14(4).

PMID: 40004731 PMC: 11856346. DOI: 10.3390/jcm14041200.


Breaking Immunosuppression to Enhance Cancer Stem Cell-Targeted Immunotherapy.

Zheng F, Zhang S, Chang A, Moon J, Wicha M, Wang S Int J Biol Sci. 2025; 21(4):1819-1836.

PMID: 39990669 PMC: 11844285. DOI: 10.7150/ijbs.101025.


Intratumoral administration of mRNA COVID-19 vaccine delays melanoma growth in mice.

Boehm D, Landreth K, Kilic E, Lee K, Misra B, Bobbala S Sci Rep. 2025; 15(1):5337.

PMID: 39948424 PMC: 11825918. DOI: 10.1038/s41598-025-89930-0.


Comprehensive Analysis Identifies as a Potential Prognostic and Immunological Biomarker in Glioblastoma.

Chen J, Wu Q, Berglund A, Macaulay R, Etame A Cells. 2025; 14(2).

PMID: 39851494 PMC: 11764009. DOI: 10.3390/cells14020066.


Flow Cytometry Analyses of Meningioma Immune Cell Composition Using a Short, Optimized Digestion Protocol.

Dao Nyesiga G, Haslund-Vinding J, Budde J, Lange J, Blum N, Dukstaite K Cancers (Basel). 2024; 16(23).

PMID: 39682129 PMC: 11640484. DOI: 10.3390/cancers16233942.


References
1.
Mariathasan S, Turley S, Nickles D, Castiglioni A, Yuen K, Wang Y . TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018; 554(7693):544-548. PMC: 6028240. DOI: 10.1038/nature25501. View

2.
He X, Koenen H, Smeets R, Keijsers R, van Rijssen E, Koerber A . Targeting PKC in human T cells using sotrastaurin (AEB071) preserves regulatory T cells and prevents IL-17 production. J Invest Dermatol. 2013; 134(4):975-983. DOI: 10.1038/jid.2013.459. View

3.
Corrales L, Glickman L, McWhirter S, Kanne D, Sivick K, Katibah G . Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Rep. 2015; 11(7):1018-30. PMC: 4440852. DOI: 10.1016/j.celrep.2015.04.031. View

4.
Liu J, Li Y, Chen W, Liang Y, Wang G, Zong M . Shp2 deletion in hepatocytes suppresses hepatocarcinogenesis driven by oncogenic β-Catenin, PIK3CA and MET. J Hepatol. 2018; 69(1):79-88. PMC: 6008184. DOI: 10.1016/j.jhep.2018.02.014. View

5.
Cheng Y, Zhu Y, Xu W, Xu J, Yang M, Chen P . PKCα in colon cancer cells promotes M1 macrophage polarization via MKK3/6-P38 MAPK pathway. Mol Carcinog. 2018; 57(8):1017-1029. DOI: 10.1002/mc.22822. View