» Articles » PMID: 38532015

The Multimodality Cell Segmentation Challenge: Toward Universal Solutions

Abstract

Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimental settings. Here, we present a multimodality cell segmentation benchmark, comprising more than 1,500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.

Citing Articles

Automated deep learning-based assessment of tumour-infiltrating lymphocyte density determines prognosis in colorectal cancer.

Millward J, He Z, Nibali A, Mouradov D, Mielke L, Tran K J Transl Med. 2025; 23(1):298.

PMID: 40065354 PMC: 11892243. DOI: 10.1186/s12967-025-06254-3.


Toward spatial glycomics and glycoproteomics: Innovations and applications.

Boottanun P, Fuseya S, Kuno A BBA Adv. 2025; 7:100146.

PMID: 40027887 PMC: 11869499. DOI: 10.1016/j.bbadva.2025.100146.


Advancing antibiotic discovery with bacterial cytological profiling: a high-throughput solution to antimicrobial resistance.

Salgado J, Rayner J, Ojkic N Front Microbiol. 2025; 16:1536131.

PMID: 40018674 PMC: 11865948. DOI: 10.3389/fmicb.2025.1536131.


Cellpose3: one-click image restoration for improved cellular segmentation.

Stringer C, Pachitariu M Nat Methods. 2025; 22(3):592-599.

PMID: 39939718 PMC: 11903308. DOI: 10.1038/s41592-025-02595-5.


Segment Anything for Microscopy.

Archit A, Freckmann L, Nair S, Khalid N, Hilt P, Rajashekar V Nat Methods. 2025; 22(3):579-591.

PMID: 39939717 PMC: 11903314. DOI: 10.1038/s41592-024-02580-4.


References
1.
Cutler K, Stringer C, Lo T, Rappez L, Stroustrup N, Peterson S . Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation. Nat Methods. 2022; 19(11):1438-1448. PMC: 9636021. DOI: 10.1038/s41592-022-01639-4. View

2.
Ulman V, Maska M, Magnusson K, Ronneberger O, Haubold C, Harder N . An objective comparison of cell-tracking algorithms. Nat Methods. 2017; 14(12):1141-1152. PMC: 5777536. DOI: 10.1038/nmeth.4473. View

3.
Upschulte E, Harmeling S, Amunts K, Dickscheid T . Contour proposal networks for biomedical instance segmentation. Med Image Anal. 2022; 77:102371. DOI: 10.1016/j.media.2022.102371. View

4.
Risom T, Glass D, Averbukh I, Liu C, Baranski A, Kagel A . Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell. 2022; 185(2):299-310.e18. PMC: 8792442. DOI: 10.1016/j.cell.2021.12.023. View

5.
Falk T, Mai D, Bensch R, Cicek O, Abdulkadir A, Marrakchi Y . U-Net: deep learning for cell counting, detection, and morphometry. Nat Methods. 2018; 16(1):67-70. DOI: 10.1038/s41592-018-0261-2. View