6.
Aydinlik S, Erkisa M, Ari F, Celikler S, Ulukaya E
. Palladium (II) Complex Enhances ROS-Dependent Apoptotic Effects via Autophagy Inhibition and Disruption of Multiple Signaling Pathways in Colorectal Cancer Cells. Anticancer Agents Med Chem. 2020; 21(10):1284-1291.
DOI: 10.2174/1871520620666200929153804.
View
7.
Liu Y, Li J, Chen M, Chen X, Zheng N
. Palladium-based nanomaterials for cancer imaging and therapy. Theranostics. 2020; 10(22):10057-10074.
PMC: 7481408.
DOI: 10.7150/thno.45990.
View
8.
Gomez I, Ovejero-Paredes K, Mendez-Arriaga J, Pizurova N, Filice M, Zajickova L
. Organotin(IV)-Decorated Graphene Quantum Dots as Dual Platform for Molecular Imaging and Treatment of Triple Negative Breast Cancer. Chemistry. 2023; 29(60):e202301845.
DOI: 10.1002/chem.202301845.
View
9.
Valimukhametova A, Lee B, Topkiran U, Gries K, Gonzalez-Rodriguez R, Coffer J
. Cancer Therapeutic siRNA Delivery and Imaging by Nitrogen- and Neodymium-Doped Graphene Quantum Dots. ACS Biomater Sci Eng. 2023; 9(6):3425-3434.
PMC: 11334710.
DOI: 10.1021/acsbiomaterials.3c00369.
View
10.
OBoyle N, Tenderholt A, Langner K
. cclib: a library for package-independent computational chemistry algorithms. J Comput Chem. 2007; 29(5):839-45.
DOI: 10.1002/jcc.20823.
View
11.
Wagner A, Knipe J, Orive G, Peppas N
. Quantum dots in biomedical applications. Acta Biomater. 2019; 94:44-63.
PMC: 6642839.
DOI: 10.1016/j.actbio.2019.05.022.
View
12.
Kargozar S, Hoseini S, Brouki Milan P, Hooshmand S, Kim H, Mozafari M
. Quantum Dots: A Review from Concept to Clinic. Biotechnol J. 2020; 15(12):e2000117.
DOI: 10.1002/biot.202000117.
View
13.
Siegel R, Miller K, Jemal A
. Cancer statistics, 2018. CA Cancer J Clin. 2018; 68(1):7-30.
DOI: 10.3322/caac.21442.
View
14.
Holzwarth U, Gibson N
. The Scherrer equation versus the 'Debye-Scherrer equation'. Nat Nanotechnol. 2011; 6(9):534.
DOI: 10.1038/nnano.2011.145.
View
15.
Ou L, Lin S, Song B, Liu J, Lai R, Shao L
. The mechanisms of graphene-based materials-induced programmed cell death: a review of apoptosis, autophagy, and programmed necrosis. Int J Nanomedicine. 2017; 12:6633-6646.
PMC: 5595361.
DOI: 10.2147/IJN.S140526.
View
16.
Abed A, Derakhshan M, Karimi M, Shirazinia M, Mahjoubin-Tehran M, Homayonfal M
. Platinum Nanoparticles in Biomedicine: Preparation, Anti-Cancer Activity, and Drug Delivery Vehicles. Front Pharmacol. 2022; 13:797804.
PMC: 8904935.
DOI: 10.3389/fphar.2022.797804.
View
17.
Zhang B, Wei P, Zhou Z, Wei T
. Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Adv Drug Deliv Rev. 2016; 105(Pt B):145-162.
DOI: 10.1016/j.addr.2016.08.009.
View
18.
Petrarca C, Clemente E, Di Giampaolo L, Mariani-Costantini R, Leopold K, Schindl R
. Palladium nanoparticles induce disturbances in cell cycle entry and progression of peripheral blood mononuclear cells: paramount role of ions. J Immunol Res. 2014; 2014:295092.
PMC: 4106057.
DOI: 10.1155/2014/295092.
View
19.
Zeng X, Sun J, Li S, Shi J, Gao H, Leong W
. Blood-triggered generation of platinum nanoparticle functions as an anti-cancer agent. Nat Commun. 2020; 11(1):567.
PMC: 6987201.
DOI: 10.1038/s41467-019-14131-z.
View
20.
Bamburowicz-Klimkowska M, Poplawska M, Grudzinski I
. Nanocomposites as biomolecules delivery agents in nanomedicine. J Nanobiotechnology. 2019; 17(1):48.
PMC: 6448271.
DOI: 10.1186/s12951-019-0479-x.
View