6.
Behrens T, Berg H, Jbabdi S, Rushworth M, Woolrich M
. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?. Neuroimage. 2006; 34(1):144-55.
PMC: 7116582.
DOI: 10.1016/j.neuroimage.2006.09.018.
View
7.
Nitkunan A, Lanfranconi S, Charlton R, Barrick T, Markus H
. Brain atrophy and cerebral small vessel disease: a prospective follow-up study. Stroke. 2010; 42(1):133-8.
DOI: 10.1161/STROKEAHA.110.594267.
View
8.
Fukunaga M, Li T, van Gelderen P, de Zwart J, Shmueli K, Yao B
. Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Natl Acad Sci U S A. 2010; 107(8):3834-9.
PMC: 2840419.
DOI: 10.1073/pnas.0911177107.
View
9.
Zhang C, Wong S, van de Haar H, Staals J, Jansen J, Jeukens C
. Blood-brain barrier leakage is more widespread in patients with cerebral small vessel disease. Neurology. 2016; 88(5):426-432.
DOI: 10.1212/WNL.0000000000003556.
View
10.
Carey D, Caprini F, Allen M, Lutti A, Weiskopf N, Rees G
. Quantitative MRI provides markers of intra-, inter-regional, and age-related differences in young adult cortical microstructure. Neuroimage. 2017; 182:429-440.
PMC: 6189523.
DOI: 10.1016/j.neuroimage.2017.11.066.
View
11.
Haacke E, Cheng N, House M, Liu Q, Neelavalli J, Ogg R
. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging. 2005; 23(1):1-25.
DOI: 10.1016/j.mri.2004.10.001.
View
12.
Fischl B, Salat D, van der Kouwe A, Makris N, Segonne F, Quinn B
. Sequence-independent segmentation of magnetic resonance images. Neuroimage. 2004; 23 Suppl 1:S69-84.
DOI: 10.1016/j.neuroimage.2004.07.016.
View
13.
De Guio F, Duering M, Fazekas F, de Leeuw F, Greenberg S, Pantoni L
. Brain atrophy in cerebral small vessel diseases: Extent, consequences, technical limitations and perspectives: The HARNESS initiative. J Cereb Blood Flow Metab. 2019; 40(2):231-245.
PMC: 7370623.
DOI: 10.1177/0271678X19888967.
View
14.
Song S, Sun S, Ramsbottom M, Chang C, Russell J, Cross A
. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage. 2002; 17(3):1429-36.
DOI: 10.1006/nimg.2002.1267.
View
15.
Wardlaw J, Smith E, Biessels G, Cordonnier C, Fazekas F, Frayne R
. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013; 12(8):822-38.
PMC: 3714437.
DOI: 10.1016/S1474-4422(13)70124-8.
View
16.
Edwards L, Kirilina E, Mohammadi S, Weiskopf N
. Microstructural imaging of human neocortex in vivo. Neuroimage. 2018; 182:184-206.
DOI: 10.1016/j.neuroimage.2018.02.055.
View
17.
Jokinen H, Lipsanen J, Schmidt R, Fazekas F, Gouw A, van der Flier W
. Brain atrophy accelerates cognitive decline in cerebral small vessel disease: the LADIS study. Neurology. 2012; 78(22):1785-92.
DOI: 10.1212/WNL.0b013e3182583070.
View
18.
Noth U, Volz S, Hattingen E, Deichmann R
. An improved method for retrospective motion correction in quantitative T2* mapping. Neuroimage. 2014; 92:106-19.
DOI: 10.1016/j.neuroimage.2014.01.050.
View
19.
Stock B, Shrestha M, Seiler A, Foerch C, Hattingen E, Steinmetz H
. Distribution of Cortical Diffusion Tensor Imaging Changes in Multiple Sclerosis. Front Physiol. 2020; 11:116.
PMC: 7083109.
DOI: 10.3389/fphys.2020.00116.
View
20.
Liu T, Sachdev P, Lipnicki D, Jiang J, Geng G, Zhu W
. Limited relationships between two-year changes in sulcal morphology and other common neuroimaging indices in the elderly. Neuroimage. 2013; 83:12-7.
DOI: 10.1016/j.neuroimage.2013.06.058.
View