» Articles » PMID: 38504017

A Visual-language Foundation Model for Computational Pathology

Overview
Journal Nat Med
Date 2024 Mar 20
PMID 38504017
Authors
Affiliations
Soon will be listed here.
Abstract

The accelerated adoption of digital pathology and advances in deep learning have enabled the development of robust models for various pathology tasks across a diverse array of diseases and patient cohorts. However, model training is often difficult due to label scarcity in the medical domain, and a model's usage is limited by the specific task and disease for which it is trained. Additionally, most models in histopathology leverage only image data, a stark contrast to how humans teach each other and reason about histopathologic entities. We introduce CONtrastive learning from Captions for Histopathology (CONCH), a visual-language foundation model developed using diverse sources of histopathology images, biomedical text and, notably, over 1.17 million image-caption pairs through task-agnostic pretraining. Evaluated on a suite of 14 diverse benchmarks, CONCH can be transferred to a wide range of downstream tasks involving histopathology images and/or text, achieving state-of-the-art performance on histology image classification, segmentation, captioning, and text-to-image and image-to-text retrieval. CONCH represents a substantial leap over concurrent visual-language pretrained systems for histopathology, with the potential to directly facilitate a wide array of machine learning-based workflows requiring minimal or no further supervised fine-tuning.

Citing Articles

AI in Histopathology Explorer for comprehensive analysis of the evolving AI landscape in histopathology.

Ma Y, Jamdade S, Konduri L, Sailem H NPJ Digit Med. 2025; 8(1):156.

PMID: 40074858 PMC: 11904230. DOI: 10.1038/s41746-025-01524-2.


Abnormality-aware multimodal learning for WSI classification.

Dang T, Zhou Q, Guo Y, Ma H, Na S, Dang T Front Med (Lausanne). 2025; 12:1546452.

PMID: 40070646 PMC: 11893561. DOI: 10.3389/fmed.2025.1546452.


Artificial intelligence in digital pathology - time for a reality check.

Aggarwal A, Bharadwaj S, Corredor G, Pathak T, Badve S, Madabhushi A Nat Rev Clin Oncol. 2025; .

PMID: 39934323 DOI: 10.1038/s41571-025-00991-6.


Pathology Foundation Models.

Ochi M, Komura D, Ishikawa S JMA J. 2025; 8(1):121-130.

PMID: 39926091 PMC: 11799676. DOI: 10.31662/jmaj.2024-0206.


Digital twins as global learning health and disease models for preventive and personalized medicine.

Li X, Loscalzo J, Mahmud A, Aly D, Rzhetsky A, Zitnik M Genome Med. 2025; 17(1):11.

PMID: 39920778 PMC: 11806862. DOI: 10.1186/s13073-025-01435-7.


References
1.
Bera K, Schalper K, Rimm D, Velcheti V, Madabhushi A . Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nat Rev Clin Oncol. 2019; 16(11):703-715. PMC: 6880861. DOI: 10.1038/s41571-019-0252-y. View

2.
Shmatko A, Laleh N, Gerstung M, Kather J . Artificial intelligence in histopathology: enhancing cancer research and clinical oncology. Nat Cancer. 2022; 3(9):1026-1038. DOI: 10.1038/s43018-022-00436-4. View

3.
Lipkova J, Chen R, Chen B, Lu M, Barbieri M, Shao D . Artificial intelligence for multimodal data integration in oncology. Cancer Cell. 2022; 40(10):1095-1110. PMC: 10655164. DOI: 10.1016/j.ccell.2022.09.012. View

4.
Coudray N, Ocampo P, Sakellaropoulos T, Narula N, Snuderl M, Fenyo D . Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 2018; 24(10):1559-1567. PMC: 9847512. DOI: 10.1038/s41591-018-0177-5. View

5.
Lu M, Williamson D, Chen T, Chen R, Barbieri M, Mahmood F . Data-efficient and weakly supervised computational pathology on whole-slide images. Nat Biomed Eng. 2021; 5(6):555-570. PMC: 8711640. DOI: 10.1038/s41551-020-00682-w. View