» Articles » PMID: 38499518

Population-wide Cerebellar Growth Models of Children and Adolescents

Abstract

In the past, the cerebellum has been best known for its crucial role in motor function. However, increasingly more findings highlight the importance of cerebellar contributions in cognitive functions and neurodevelopment. Using a total of 7240 neuroimaging scans from 4862 individuals, we describe and provide detailed, openly available models of cerebellar development in childhood and adolescence (age range: 6-17 years), an important time period for brain development and onset of neuropsychiatric disorders. Next to a traditionally used anatomical parcellation of the cerebellum, we generated growth models based on a recently proposed functional parcellation. In both, we find an anterior-posterior growth gradient mirroring the age-related improvements of underlying behavior and function, which is analogous to cerebral maturation patterns and offers evidence for directly related cerebello-cortical developmental trajectories. Finally, we illustrate how the current approach can be used to detect cerebellar abnormalities in clinical samples.

Citing Articles

Dev-Atlas: A reference atlas of functional brain networks for typically developing adolescents.

Doucet G, Goldsmith C, Myers K, Rice D, Ende G, Pavelka D Dev Cogn Neurosci. 2025; 72:101523.

PMID: 39938145 PMC: 11870229. DOI: 10.1016/j.dcn.2025.101523.


Can attention-deficit/hyperactivity disorder be considered a form of cerebellar dysfunction?.

Isaac V, Lopez V, Escobar M Front Neurosci. 2025; 19:1453025.

PMID: 39911701 PMC: 11794510. DOI: 10.3389/fnins.2025.1453025.


Age-Related Changes in Brain Structure in Pediatric Chronic Kidney Disease.

van der Plas E, Nelson E, Becknell B, Dawson A, Wilson C, Dawson J JAMA Netw Open. 2025; 8(2):e2457601.

PMID: 39899296 PMC: 11791706. DOI: 10.1001/jamanetworkopen.2024.57601.


Structural covariation between cerebellum and neocortex intrinsic structural covariation links cerebellum subregions to the cerebral cortex.

Wang Z, Diedrichsen J, Saltoun K, Steele C, Arnold-Anteraper S, Yeo B J Neurophysiol. 2024; 132(3):849-869.

PMID: 39052236 PMC: 11427046. DOI: 10.1152/jn.00164.2024.


Heritability of cerebellar subregion volumes in adolescent and young adult twins.

Strike L, Kerestes R, McMahon K, de Zubicaray G, Harding I, Medland S Hum Brain Mapp. 2024; 45(8):e26717.

PMID: 38798116 PMC: 11128777. DOI: 10.1002/hbm.26717.


References
1.
Blanken L, Mous S, Ghassabian A, Muetzel R, Schoemaker N, El Marroun H . Cortical morphology in 6- to 10-year old children with autistic traits: a population-based neuroimaging study. Am J Psychiatry. 2015; 172(5):479-86. DOI: 10.1176/appi.ajp.2014.14040482. View

2.
Fatemi S, Aldinger K, Ashwood P, Bauman M, Blaha C, Blatt G . Consensus paper: pathological role of the cerebellum in autism. Cerebellum. 2012; 11(3):777-807. PMC: 3677555. DOI: 10.1007/s12311-012-0355-9. View

3.
Rutherford S, Kia S, Wolfers T, Fraza C, Zabihi M, Dinga R . The normative modeling framework for computational psychiatry. Nat Protoc. 2022; 17(7):1711-1734. PMC: 7613648. DOI: 10.1038/s41596-022-00696-5. View

4.
Tamnes C, Herting M, Goddings A, Meuwese R, Blakemore S, Dahl R . Development of the Cerebral Cortex across Adolescence: A Multisample Study of Inter-Related Longitudinal Changes in Cortical Volume, Surface Area, and Thickness. J Neurosci. 2017; 37(12):3402-3412. PMC: 5373125. DOI: 10.1523/JNEUROSCI.3302-16.2017. View

5.
Marques J, van der Zwaag W, Granziera C, Krueger G, Gruetter R . Cerebellar cortical layers: in vivo visualization with structural high-field-strength MR imaging. Radiology. 2010; 254(3):942-8. DOI: 10.1148/radiol.09091136. View