6.
Veatch J, Lee S, Shasha C, Singhi N, Szeto J, Moshiri A
. Neoantigen-specific CD4 T cells in human melanoma have diverse differentiation states and correlate with CD8 T cell, macrophage, and B cell function. Cancer Cell. 2022; 40(4):393-409.e9.
PMC: 9011147.
DOI: 10.1016/j.ccell.2022.03.006.
View
7.
Lim H, Kim C
. Loss of IL-7 receptor alpha on CD4+ T cells defines terminally differentiated B cell-helping effector T cells in a B cell-rich lymphoid tissue. J Immunol. 2007; 179(11):7448-56.
DOI: 10.4049/jimmunol.179.11.7448.
View
8.
Cohen M, Giladi A, Barboy O, Hamon P, Li B, Zada M
. The interaction of CD4 helper T cells with dendritic cells shapes the tumor microenvironment and immune checkpoint blockade response. Nat Cancer. 2022; 3(3):303-317.
DOI: 10.1038/s43018-022-00338-5.
View
9.
Strickland M, Alvarez-Breckenridge C, Gainor J, Brastianos P
. Tumor Immune Microenvironment of Brain Metastases: Toward Unlocking Antitumor Immunity. Cancer Discov. 2022; 12(5):1199-1216.
PMC: 11440428.
DOI: 10.1158/2159-8290.CD-21-0976.
View
10.
Ahrends T, Borst J
. The opposing roles of CD4 T cells in anti-tumour immunity. Immunology. 2018; .
PMC: 6050207.
DOI: 10.1111/imm.12941.
View
11.
Betts G, Jones E, Junaid S, El-Shanawany T, Scurr M, Mizen P
. Suppression of tumour-specific CD4⁺ T cells by regulatory T cells is associated with progression of human colorectal cancer. Gut. 2011; 61(8):1163-71.
PMC: 3388728.
DOI: 10.1136/gutjnl-2011-300970.
View
12.
Mariathasan S, Turley S, Nickles D, Castiglioni A, Yuen K, Wang Y
. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018; 554(7693):544-548.
PMC: 6028240.
DOI: 10.1038/nature25501.
View
13.
Simoni Y, Becht E, Fehlings M, Loh C, Koo S, Teng K
. Bystander CD8 T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 2018; 557(7706):575-579.
DOI: 10.1038/s41586-018-0130-2.
View
14.
Qiu J, Li X, He Y, Wang Q, Li J, Wu J
. Identification of comutation in signaling pathways to predict the clinical outcomes of immunotherapy. J Transl Med. 2022; 20(1):613.
PMC: 9783967.
DOI: 10.1186/s12967-022-03836-3.
View
15.
Kather J, Heij L, Grabsch H, Loeffler C, Echle A, Muti H
. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat Cancer. 2021; 1(8):789-799.
PMC: 7610412.
DOI: 10.1038/s43018-020-0087-6.
View
16.
Rizvi N, Hellmann M, Snyder A, Kvistborg P, Makarov V, Havel J
. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015; 348(6230):124-8.
PMC: 4993154.
DOI: 10.1126/science.aaa1348.
View
17.
Caushi J, Zhang J, Ji Z, Vaghasia A, Zhang B, Hsiue E
. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature. 2021; 596(7870):126-132.
PMC: 8338555.
DOI: 10.1038/s41586-021-03752-4.
View
18.
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z
. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb). 2021; 2(3):100141.
PMC: 8454663.
DOI: 10.1016/j.xinn.2021.100141.
View
19.
Yang M, Lu J, Zhang G, Wang Y, He M, Xu Q
. CXCL13 shapes immunoactive tumor microenvironment and enhances the efficacy of PD-1 checkpoint blockade in high-grade serous ovarian cancer. J Immunother Cancer. 2021; 9(1).
PMC: 7813306.
DOI: 10.1136/jitc-2020-001136.
View
20.
Rose T, Weir W, Mayhew G, Shibata Y, Eulitt P, Uronis J
. Fibroblast growth factor receptor 3 alterations and response to immune checkpoint inhibition in metastatic urothelial cancer: a real world experience. Br J Cancer. 2021; 125(9):1251-1260.
PMC: 8548561.
DOI: 10.1038/s41416-021-01488-6.
View