» Articles » PMID: 38494997

Investigation of Apoptotic Effects of Cucurbitacin D, I, and E Mediated by Bax/Bcl-xL, Caspase-3/9, and Oxidative Stress Modulators in HepG2 Cell Line

Overview
Journal Drug Dev Res
Specialty Pharmacology
Date 2024 Mar 18
PMID 38494997
Authors
Affiliations
Soon will be listed here.
Abstract

Cucurbitacins, natural compounds highly abundant in the Cucurbitaceae plant family, are characterized by their anticancer, anti-inflammatory, and hepatoprotective properties. These compounds have potential as therapeutic agents in the treatment of liver cancer. This study investigated the association of cucurbitacin D, I, and E (CuD, CuI, and CuE) with the caspase cascade, Bcl-2 family, and oxidative stress modulators in the HepG2 cell line. We evaluated the antiproliferative effects of CuD, CuI, and CuE using the MTT assay. We analyzed Annexin V/PI double staining, cell cycle, mitochondrial membrane potential, and wound healing assays at different doses of the three compounds. To examine the modulation of the caspase cascade, we determined the protein and gene expression levels of Bax, Bcl-xL, caspase-3, and caspase-9. We evaluated the total antioxidant status (TAS), total oxidant status (TOS), superoxide dismutase (SOD), glutathione (GSH), Total, and Native Thiol levels to measure cellular redox status. CuD, CuI, and CuE suppressed the proliferation of HepG2 cells in a dose-dependent manner. The cucurbitacins induced apoptosis by increasing caspase-3, caspase-9, and Bax activity, inhibiting Bcl-xL activation, causing loss of ΔΨm, and suppressing cell migration. Furthermore, cucurbitacins modulated oxidative stress by increasing TOS levels and decreasing SOD, GSH, TAS, and total and native Thiol levels. Our findings suggest that CuD, CuI, and CuE exert apoptotic effects on the hepatocellular carcinoma cell line by regulating Bax/Bcl-xL, caspase-3/9 signaling, and causing intracellular ROS increase in HepG2 cells.

Citing Articles

Oxidative/Nitrosative Stress, Apoptosis, and Redox Signaling: Key Players in Neurodegenerative Diseases.

Uremis N, Uremis M J Biochem Mol Toxicol. 2025; 39(1):e70133.

PMID: 39799559 PMC: 11725306. DOI: 10.1002/jbt.70133.


Squirting Cucumber, (L.) A. Ritch: An Update of Its Chemical and Pharmacological Profile.

Anzano A, de Falco B, Grauso L, Lanzotti V Molecules. 2024; 29(18).

PMID: 39339372 PMC: 11434464. DOI: 10.3390/molecules29184377.