» Articles » PMID: 38491167

Ca Oscillation in Vascular Smooth Muscle Cells Control Myogenic Spontaneous Vasomotion and Counteract Post-ischemic No-reflow

Overview
Journal Commun Biol
Specialty Biology
Date 2024 Mar 16
PMID 38491167
Authors
Affiliations
Soon will be listed here.
Abstract

Ischemic stroke produces the highest adult disability. Despite successful recanalization, no-reflow, or the futile restoration of the cerebral perfusion after ischemia, is a major cause of brain lesion expansion. However, the vascular mechanism underlying this hypoperfusion is largely unknown, and no approach is available to actively promote optimal reperfusion to treat no-reflow. Here, by combining two-photon laser scanning microscopy (2PLSM) and a mouse middle cerebral arteriolar occlusion (MCAO) model, we find myogenic vasomotion deficits correlated with post-ischemic cerebral circulation interruptions and no-reflow. Transient occlusion-induced transient loss of mitochondrial membrane potential (ΔΨm) permanently impairs mitochondria-endoplasmic reticulum (ER) contacts and abolish Ca oscillation in smooth muscle cells (SMCs), the driving force of myogenic spontaneous vasomotion. Furthermore, tethering mitochondria and ER by specific overexpression of ME-Linker in SMCs restores cytosolic Ca homeostasis, remotivates myogenic spontaneous vasomotion, achieves optimal reperfusion, and ameliorates neurological injury. Collectively, the maintaining of arteriolar myogenic vasomotion and mitochondria-ER contacts in SMCs, are of critical importance in preventing post-ischemic no-reflow.

Citing Articles

From Mechanisms to Medicine: Neurovascular Coupling in the Diagnosis and Treatment of Cerebrovascular Disorders: A Narrative Review.

Yang L, Zhao W, Kan Y, Ren C, Ji X Cells. 2025; 14(1.

PMID: 39791717 PMC: 11719775. DOI: 10.3390/cells14010016.


Assessment of Microvascular Function Based on Flowmotion Monitored by the Flow-Mediated Skin Fluorescence Technique.

Marcinek A, Katarzynska J, Cypryk K, Los-Stegienta A, Slowikowska-Hilczer J, Walczak-Jedrzejowska R Biosensors (Basel). 2024; 14(10).

PMID: 39451673 PMC: 11505855. DOI: 10.3390/bios14100459.


High-resolution vasomotion analysis reveals novel arteriole physiological features and progressive modulation of cerebral vascular networks by stroke.

Zhang Y, Li J, Xie H, Jin Y, Wang W, Zhao B J Cereb Blood Flow Metab. 2024; 44(11):1330-1348.

PMID: 38820436 PMC: 11542124. DOI: 10.1177/0271678X241258576.

References
1.
Dorado L, Millan M, Davalos A . Reperfusion therapies for acute ischemic stroke: an update. Curr Cardiol Rev. 2014; 10(4):327-35. PMC: 4101197. DOI: 10.2174/1573403x10666140320144637. View

2.
Cho T, Nighoghossian N, Mikkelsen I, Derex L, Hermier M, Pedraza S . Reperfusion within 6 hours outperforms recanalization in predicting penumbra salvage, lesion growth, final infarct, and clinical outcome. Stroke. 2015; 46(6):1582-9. DOI: 10.1161/STROKEAHA.114.007964. View

3.
Anderson G, Rickards C . The potential therapeutic benefits of low frequency haemodynamic oscillations. J Physiol. 2022; 600(17):3905-3919. PMC: 9444954. DOI: 10.1113/JP282605. View

4.
Dalkara T, Arsava E . Can restoring incomplete microcirculatory reperfusion improve stroke outcome after thrombolysis?. J Cereb Blood Flow Metab. 2012; 32(12):2091-9. PMC: 3519416. DOI: 10.1038/jcbfm.2012.139. View

5.
Ju Y, Woodcock E, Allen D, Cannell M . Inositol 1,4,5-trisphosphate receptors and pacemaker rhythms. J Mol Cell Cardiol. 2012; 53(3):375-81. DOI: 10.1016/j.yjmcc.2012.06.004. View