» Articles » PMID: 38491139

A Mechanistic Model of Primer Synthesis from Catalytic Structures of DNA Polymerase α-primase

Overview
Date 2024 Mar 16
PMID 38491139
Authors
Affiliations
Soon will be listed here.
Abstract

The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of Xenopus laevis polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5' end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer-template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.

Citing Articles

Thg1 family 3'-5' RNA polymerases as tools for targeted RNA synthesis.

Jayasinghe M, Patel K, Jackman J RNA. 2024; 30(10):1315-1327.

PMID: 38997129 PMC: 11404450. DOI: 10.1261/rna.080156.124.


Flexibility and Distributive Synthesis Regulate RNA Priming and Handoff in Human DNA Polymerase α-Primase.

Cordoba J, Mullins E, Salay L, Eichman B, Chazin W J Mol Biol. 2023; 435(24):168330.

PMID: 37884206 PMC: 10872500. DOI: 10.1016/j.jmb.2023.168330.


Flexibility and distributive synthesis regulate RNA priming and handoff in human DNA polymerase α-primase.

Cordoba J, Mullins E, Salay L, Eichman B, Chazin W bioRxiv. 2023; .

PMID: 37577606 PMC: 10418221. DOI: 10.1101/2023.08.01.551538.


Primase-polymerases: how to make a primer from scratch.

Bainbridge L, Zabrady K, Doherty A Biosci Rep. 2023; 43(7).

PMID: 37358261 PMC: 10345425. DOI: 10.1042/BSR20221986.

References
1.
Stith C, Sterling J, Resnick M, Gordenin D, Burgers P . Flexibility of eukaryotic Okazaki fragment maturation through regulated strand displacement synthesis. J Biol Chem. 2008; 283(49):34129-40. PMC: 2590699. DOI: 10.1074/jbc.M806668200. View

2.
Kilkenny M, Veale C, Guppy A, Hardwick S, Chirgadze D, Rzechorzek N . Structural basis for the interaction of SARS-CoV-2 virulence factor nsp1 with DNA polymerase α-primase. Protein Sci. 2021; 31(2):333-344. PMC: 8661717. DOI: 10.1002/pro.4220. View

3.
Jones M, Aria V, Baris Y, Yeeles J . How Pol α-primase is targeted to replisomes to prime eukaryotic DNA replication. Mol Cell. 2023; 83(16):2911-2924.e16. PMC: 10501992. DOI: 10.1016/j.molcel.2023.06.035. View

4.
Sauguet L, Klinge S, Perera R, Maman J, Pellegrini L . Shared active site architecture between the large subunit of eukaryotic primase and DNA photolyase. PLoS One. 2010; 5(4):e10083. PMC: 2852410. DOI: 10.1371/journal.pone.0010083. View

5.
Yan S, Michael W . TopBP1 and DNA polymerase alpha-mediated recruitment of the 9-1-1 complex to stalled replication forks: implications for a replication restart-based mechanism for ATR checkpoint activation. Cell Cycle. 2009; 8(18):2877-84. DOI: 10.4161/cc.8.18.9485. View