» Articles » PMID: 38490988

Near-field Detection of Gate-tunable Anisotropic Plasmon Polaritons in Black Phosphorus at Terahertz Frequencies

Overview
Journal Nat Commun
Specialty Biology
Date 2024 Mar 16
PMID 38490988
Authors
Affiliations
Soon will be listed here.
Abstract

Polaritons in two-dimensional layered crystals offer an effective solution to confine, enhance and manipulate terahertz (THz) frequency electromagnetic waves at the nanoscale. Recently, strong THz field confinement has been achieved in a graphene-insulator-metal structure, exploiting THz plasmon polaritons (PPs) with strongly reduced wavelength (λ ≈ λ/66) compared to the photon wavelength λ. However, graphene PPs propagate isotropically, complicating the directional control of the THz field, which, on the contrary, can be achieved exploiting anisotropic layered crystals, such as orthorhombic black-phosphorus. Here, we detect PPs, at THz frequencies, in hBN-encapsulated black phosphorus field effect transistors through THz near-field photocurrent nanoscopy. The real-space mapping of the thermoelectrical near-field photocurrents reveals deeply sub-wavelength THz PPs (λ ≈ λ/76), with dispersion tunable by electrostatic control of the carrier density. The in-plane anisotropy of the dielectric response results into anisotropic polariton propagation along the armchair and zigzag crystallographic axes of black-phosphorus. The achieved directional subwavelength light confinement makes this material system a versatile platform for sensing and quantum technology based on nonlinear optics.

Citing Articles

Spacetime Imaging of Group and Phase Velocities of Terahertz Surface Plasmon Polaritons in Graphene.

Anglhuber S, Zizlsperger M, Pogna E, Gerasimenko Y, Koulouklidis A, Gronwald I Nano Lett. 2025; 25(6):2125-2132.

PMID: 39746211 PMC: 11827103. DOI: 10.1021/acs.nanolett.4c04615.

References
1.
Chen S, Leng P, Konecna A, Modin E, Gutierrez-Amigo M, Vicentini E . Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nat Mater. 2023; 22(7):860-866. DOI: 10.1038/s41563-023-01547-8. View

2.
Chaudhary K, Tamagnone M, Rezaee M, Bediako D, Ambrosio A, Kim P . Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Sci Adv. 2019; 5(4):eaau7171. PMC: 6461454. DOI: 10.1126/sciadv.aau7171. View

3.
Fei Z, Andreev G, Bao W, Zhang L, McLeod A, Wang C . Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface. Nano Lett. 2011; 11(11):4701-5. DOI: 10.1021/nl202362d. View

4.
Ma W, Alonso-Gonzalez P, Li S, Nikitin A, Yuan J, Martin-Sanchez J . In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature. 2018; 562(7728):557-562. DOI: 10.1038/s41586-018-0618-9. View

5.
Ling X, Huang S, Hasdeo E, Liang L, Parkin W, Tatsumi Y . Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus. Nano Lett. 2016; 16(4):2260-7. DOI: 10.1021/acs.nanolett.5b04540. View