Artificial Intelligence in Skin Diseases: Fulfilling Its Potentials to Meet the Real Needs in Dermatology Practice
Overview
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
Citing Articles
Liao Z, Shi Z, Sarker M, Tabata H Heliyon. 2024; 10(7):e28903.
PMID: 38576550 PMC: 10990971. DOI: 10.1016/j.heliyon.2024.e28903.
Dobre E, Surcel M, Constantin C, Ilie M, Caruntu A, Caruntu C Int J Mol Sci. 2023; 24(2).
PMID: 36674595 PMC: 9866322. DOI: 10.3390/ijms24021079.
References
1.
Esteva A, Kuprel B, Novoa R, Ko J, Swetter S, Blau H
. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542(7639):115-118.
PMC: 8382232.
DOI: 10.1038/nature21056.
View
2.
Wiens J, Saria S, Sendak M, Ghassemi M, Liu V, Doshi-Velez F
. Do no harm: a roadmap for responsible machine learning for health care. Nat Med. 2019; 25(9):1337-1340.
DOI: 10.1038/s41591-019-0548-6.
View
3.
Wu Y, Wang Y, Wang L, Yin P, Lin Y, Zhou M
. Burden of melanoma in China, 1990-2017: Findings from the 2017 global burden of disease study. Int J Cancer. 2019; 147(3):692-701.
DOI: 10.1002/ijc.32764.
View
4.
Bai R, Huang H, Li M, Chu M
. Temporal Trends in the Incidence and Mortality of Skin Malignant Melanoma in China from 1990 to 2019. J Oncol. 2021; 2021:9989824.
PMC: 8407983.
DOI: 10.1155/2021/9989824.
View