» Articles » PMID: 38484471

Chemical Probes to Interrogate the Extreme Environment of Mosquito Larval Guts

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2024 Mar 14
PMID 38484471
Authors
Affiliations
Soon will be listed here.
Abstract

Mosquito control methods are vital to curtail the spread of life-threatening illnesses, such as dengue fever, malaria, and yellow fever. Vector control technologies must be selective to minimize deleterious effects on our ecosystem. Successful methods that control mosquito larva populations utilize the uniquely high alkaline nature of the midgut. Here, we present novel protected triazabutadienes (pTBD) that are deprotected under basic conditions of the larval midgut, releasing an aryl diazonium ion (ADI) that results in protein modification. The probes contain a bioorthogonal terminal alkyne handle, enabling a selective Cu-click reaction with an azidofluorophore for quantification by SDS PAGE and visualization using fluorescence microscopy. A control TBD, unable to release an ADI, did not label the midgut. We envision our chemical probes will aid in the development of new selective mosquito control methods, thus preventing the spread of mosquito-borne illnesses with minimal impact on other organisms in the ecosystem.

Citing Articles

Rhodamine-functionalized carbon dots with pH-regulated FRET efficiency for ratiometric fluorescence sensing and imaging of extremely alkaline pH.

Zhang J, Wang D, Li J, Tian Y, Yang S Mikrochim Acta. 2025; 192(2):109.

PMID: 39875630 DOI: 10.1007/s00604-024-06941-w.


Affinity-Driven Aryl Diazonium Labeling of Peptide Receptors on Living Cells.

Sharma S, Naldrett M, Gill M, Checco J J Am Chem Soc. 2024; 146(19):13676-13688.

PMID: 38693710 PMC: 11149697. DOI: 10.1021/jacs.4c04672.

References
1.
Presolski S, Hong V, Finn M . Copper-Catalyzed Azide-Alkyne Click Chemistry for Bioconjugation. Curr Protoc Chem Biol. 2012; 3(4):153-162. PMC: 3404492. DOI: 10.1002/9780470559277.ch110148. View

2.
Cancino-Rodezno A, Lozano L, Oppert C, Castro J, Lanz-Mendoza H, Encarnacion S . Comparative proteomic analysis of Aedes aegypti larval midgut after intoxication with Cry11Aa toxin from Bacillus thuringiensis. PLoS One. 2012; 7(5):e37034. PMC: 3353955. DOI: 10.1371/journal.pone.0037034. View

3.
Tetreau G, Stalinski R, David J, Despres L . Monitoring resistance to Bacillus thuringiensis subsp. israelensis in the field by performing bioassays with each Cry toxin separately. Mem Inst Oswaldo Cruz. 2013; 108(7):894-900. PMC: 3970644. DOI: 10.1590/0074-0276130155. View

4.
Harrison J . Insect acid-base physiology. Annu Rev Entomol. 2000; 46:221-50. DOI: 10.1146/annurev.ento.46.1.221. View

5.
Venancio T, Cristofoletti P, Ferreira C, Verjovski-Almeida S, Terra W . The Aedes aegypti larval transcriptome: a comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Insect Mol Biol. 2008; 18(1):33-44. DOI: 10.1111/j.1365-2583.2008.00845.x. View