ILK Inhibition Reduces Osteophyte Formation Through Suppression of Osteogenesis in BMSCs Via Akt/GSK-3β/β-catenin Pathway
Overview
Affiliations
Background: Osteophyte development is a common characteristic of inflammatory skeletal diseases. Elevated osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) participates in pathological osteogenesis. Integrin-linked kinase (ILK) positively regulates the osteoblastic differentiation of osteoprogenitors, but whether the ILK blockage prevents osteophytes and its potential mechanism is still unknown. Furthermore, the low-dose tumor necrosis factor-α (TNF-α) promotes osteogenic differentiation, but a lack of study reports on the relationship between this cytokine and ILK. OSU-T315 is a small ILK inhibitor, which was used to determine the effect of ILK inhibition on osteogenesis and osteophyte formation.
Methods And Results: The osteogenesis of BMSCs was evaluated using Alizarin red S staining, alkaline phosphatase, collagen type I alpha 2 chain, and bone gamma-carboxyglutamate protein. The expression and phosphorylation of protein were assessed through western blot. Immunofluorescence was employed to display the distribution of β-catenin. microCT, hematoxylin-eosin, and safranin O/fast green staining were utilized to observe the osteophyte formation in collagen antibody-induced arthritis mice. We found that ILK blockage significantly declined calcium deposition and osteoblastic markers in a dose- and time-dependent manner. Furthermore, it lowered osteogenesis in the TNF-α-induced inflammatory microenvironment by diminishing the effect of ILK and inactivating the Akt/ GSK-3β/ β-catenin pathway. Nuclear β-catenin was descended by OSU-T315 as well. Finally, the ILK suppression restrained osteophyte formation but not inflammation in vivo.
Conclusions: ILK inhibition lowered osteogenesis in TNF-α-related inflammatory conditions by deactivating the Akt/ GSK-3β/ β-catenin pathway. This may be a potential strategy to alleviate osteophyte development in addition to anti-inflammatory treatment.
Xu Y, Meng W, Dai Y, Xu L, Ding N, Zhang J Cell Death Discov. 2025; 11(1):54.
PMID: 39922804 PMC: 11807217. DOI: 10.1038/s41420-025-02334-x.