6.
Chen H, Chen Y, Lu M, Chang J, Wang H, Ke H
. A highly efficient β-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. Biotechnol Biofuels. 2012; 5(1):24.
PMC: 3403894.
DOI: 10.1186/1754-6834-5-24.
View
7.
Yeoman C, Han Y, Dodd D, Schroeder C, Mackie R, Cann I
. Thermostable enzymes as biocatalysts in the biofuel industry. Adv Appl Microbiol. 2010; 70:1-55.
PMC: 4561533.
DOI: 10.1016/S0065-2164(10)70001-0.
View
8.
Gao J, Weng H, Xi Y, Zhu D, Han S
. Purification and characterization of a novel endo-beta-1,4-glucanase from the thermoacidophilic Aspergillus terreus. Biotechnol Lett. 2007; 30(2):323-7.
DOI: 10.1007/s10529-007-9536-x.
View
9.
He Y, Wang C, Jiao R, Ni Q, Wang Y, Gao Q
. Biochemical characterization of a novel glucose-tolerant GH3 β-glucosidase (Bgl1973) from Leifsonia sp. ZF2019. Appl Microbiol Biotechnol. 2022; 106(13-16):5063-5079.
DOI: 10.1007/s00253-022-12064-0.
View
10.
Dadwal A, Sharma S, Satyanarayana T
. Biochemical characteristics of recombinant -glucosidase (MtBgl3c) applicable in cellulose bioconversion. Prep Biochem Biotechnol. 2023; 53(10):1187-1198.
DOI: 10.1080/10826068.2023.2177869.
View
11.
Yang F, Yang X, Li Z, Du C, Wang J, Li S
. Overexpression and characterization of a glucose-tolerant β-glucosidase from T. aotearoense with high specific activity for cellobiose. Appl Microbiol Biotechnol. 2015; 99(21):8903-15.
DOI: 10.1007/s00253-015-6619-9.
View
12.
Cai L, Xu S, Lu T, Lin D, Yao S
. Directed expression of halophilic and acidophilic β-glucosidases by introducing homologous constitutive expression cassettes in marine Aspergillus niger. J Biotechnol. 2019; 292:12-22.
DOI: 10.1016/j.jbiotec.2018.12.015.
View
13.
Cole J, Gieler B, Heisler D, Palisoc M, Williams A, Dohnalkova A
. Kallotenue papyrolyticum gen. nov., sp. nov., a cellulolytic and filamentous thermophile that represents a novel lineage (Kallotenuales ord. nov., Kallotenuaceae fam. nov.) within the class Chloroflexia. Int J Syst Evol Microbiol. 2013; 63(Pt 12):4675-4682.
DOI: 10.1099/ijs.0.053348-0.
View
14.
Florindo R, Souza V, Mutti H, Margarido L, Camilo C, Marana S
. Structural and biochemical data of GH1 β-glucosidases. Data Brief. 2017; 15:340-343.
PMC: 5712062.
DOI: 10.1016/j.dib.2017.09.044.
View
15.
Mariano D, Leite C, Santos L, Marins L, Machado K, Werhli A
. Characterization of glucose-tolerant β-glucosidases used in biofuel production under the bioinformatics perspective: a systematic review. Genet Mol Res. 2017; 16(3).
DOI: 10.4238/gmr16039740.
View
16.
Ketudat Cairns J, Esen A
. β-Glucosidases. Cell Mol Life Sci. 2010; 67(20):3389-405.
PMC: 11115901.
DOI: 10.1007/s00018-010-0399-2.
View
17.
Harnpicharnchai P, Champreda V, Sornlake W, Eurwilaichitr L
. A thermotolerant beta-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein Expr Purif. 2008; 67(2):61-9.
DOI: 10.1016/j.pep.2008.05.022.
View
18.
Pei J, Pang Q, Zhao L, Fan S, Shi H
. Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnol Biofuels. 2012; 5(1):31.
PMC: 3395577.
DOI: 10.1186/1754-6834-5-31.
View
19.
Yin Y, Li X, Long C, Li L, Hang Y, Rao M
. Characterization of a GH10 extremely thermophilic xylanase from the metagenome of hot spring for prebiotic production. Sci Rep. 2023; 13(1):16053.
PMC: 10520001.
DOI: 10.1038/s41598-023-42920-6.
View
20.
Benjamin Y, Garcia-Aparicio M, Gorgens J
. Impact of cultivar selection and process optimization on ethanol yield from different varieties of sugarcane. Biotechnol Biofuels. 2014; 7:60.
PMC: 3997192.
DOI: 10.1186/1754-6834-7-60.
View