6.
Frosen J, Piippo A, Paetau A, Kangasniemi M, Niemela M, Hernesniemi J
. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke. 2004; 35(10):2287-93.
DOI: 10.1161/01.STR.0000140636.30204.da.
View
7.
Fu Q, Guan S, Liu C, Wang K, Cheng J
. Clinical Significance of Circumferential Aneurysmal Wall Enhancement in Symptomatic Patients with Unruptured Intracranial Aneurysms: a High-resolution MRI Study. Clin Neuroradiol. 2017; 28(4):509-514.
DOI: 10.1007/s00062-017-0598-4.
View
8.
Vergouwen M, Backes D, van der Schaaf I, Hendrikse J, Kleinloog R, Algra A
. Gadolinium Enhancement of the Aneurysm Wall in Unruptured Intracranial Aneurysms Is Associated with an Increased Risk of Aneurysm Instability: A Follow-Up Study. AJNR Am J Neuroradiol. 2019; 40(7):1112-1116.
PMC: 7048551.
DOI: 10.3174/ajnr.A6105.
View
9.
Vakil P, Ansari S, Cantrell C, Eddleman C, Dehkordi F, Vranic J
. Quantifying Intracranial Aneurysm Wall Permeability for Risk Assessment Using Dynamic Contrast-Enhanced MRI: A Pilot Study. AJNR Am J Neuroradiol. 2015; 36(5):953-9.
PMC: 7990602.
DOI: 10.3174/ajnr.A4225.
View
10.
Pichat J, Iglesias J, Yousry T, Ourselin S, Modat M
. A Survey of Methods for 3D Histology Reconstruction. Med Image Anal. 2018; 46:73-105.
DOI: 10.1016/j.media.2018.02.004.
View
11.
Samaniego E, Roa J, Hasan D
. Vessel wall imaging in intracranial aneurysms. J Neurointerv Surg. 2019; 11(11):1105-1112.
DOI: 10.1136/neurintsurg-2019-014938.
View
12.
Aoki T, Kataoka H, Ishibashi R, Nozaki K, Morishita R, Hashimoto N
. Reduced collagen biosynthesis is the hallmark of cerebral aneurysm: contribution of interleukin-1beta and nuclear factor-kappaB. Arterioscler Thromb Vasc Biol. 2009; 29(7):1080-6.
DOI: 10.1161/ATVBAHA.108.180760.
View
13.
Frosen J
. Smooth muscle cells and the formation, degeneration, and rupture of saccular intracranial aneurysm wall--a review of current pathophysiological knowledge. Transl Stroke Res. 2014; 5(3):347-56.
DOI: 10.1007/s12975-014-0340-3.
View
14.
Matsushige T, Shimonaga K, Mizoue T, Hosogai M, Hashimoto Y, Kaneko M
. Focal Aneurysm Wall Enhancement on Magnetic Resonance Imaging Indicates Intraluminal Thrombus and the Rupture Point. World Neurosurg. 2019; 127:e578-e584.
DOI: 10.1016/j.wneu.2019.03.209.
View
15.
Tulamo R, Frosen J, Junnikkala S, Paetau A, Kangasniemi M, Pelaez J
. Complement system becomes activated by the classical pathway in intracranial aneurysm walls. Lab Invest. 2009; 90(2):168-79.
DOI: 10.1038/labinvest.2009.133.
View
16.
Sidney L, Branch M, Dunphy S, Dua H, Hopkinson A
. Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells. 2014; 32(6):1380-9.
PMC: 4260088.
DOI: 10.1002/stem.1661.
View
17.
Page M, McKenzie J, Bossuyt P, Boutron I, Hoffmann T, Mulrow C
. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372:n71.
PMC: 8005924.
DOI: 10.1136/bmj.n71.
View
18.
Vlak M, Algra A, Brandenburg R, Rinkel G
. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 2011; 10(7):626-36.
DOI: 10.1016/S1474-4422(11)70109-0.
View
19.
Katsamenis O, Olding M, Warner J, Chatelet D, Jones M, Sgalla G
. X-ray Micro-Computed Tomography for Nondestructive Three-Dimensional (3D) X-ray Histology. Am J Pathol. 2019; 189(8):1608-1620.
PMC: 6680277.
DOI: 10.1016/j.ajpath.2019.05.004.
View
20.
Larsen N, Fluh C, Saalfeld S, Voss S, Hille G, Trick D
. Multimodal validation of focal enhancement in intracranial aneurysms as a surrogate marker for aneurysm instability. Neuroradiology. 2020; 62(12):1627-1635.
PMC: 7666674.
DOI: 10.1007/s00234-020-02498-6.
View