6.
Kilb W
. Development of the GABAergic system from birth to adolescence. Neuroscientist. 2011; 18(6):613-30.
DOI: 10.1177/1073858411422114.
View
7.
Gonzalez Burgos G, Biali F, Nicola Siri L, Cardinali D
. Effect of gamma-aminobutyric acid on synaptic transmission and long-term potentiation in rat superior cervical ganglion. Brain Res. 1994; 658(1-2):1-7.
DOI: 10.1016/s0006-8993(09)90002-6.
View
8.
Stein V, Nicoll R
. GABA generates excitement. Neuron. 2003; 37(3):375-8.
DOI: 10.1016/s0896-6273(03)00056-4.
View
9.
Wolff J, Kasa P, Dobo E, Wenthold R, Joo F
. Quantitative analysis of the number and distribution of neurons richly innervated by GABA-immunoreactive axons in the rat superior cervical ganglion. J Comp Neurol. 1989; 282(2):264-73.
DOI: 10.1002/cne.902820208.
View
10.
Vega A, Luther J, Birren S, Morales M
. Segregation of the classical transmitters norepinephrine and acetylcholine and the neuropeptide Y in sympathetic neurons: modulation by ciliary neurotrophic factor or prolonged growth in culture. Dev Neurobiol. 2010; 70(14):913-28.
DOI: 10.1002/dneu.20834.
View
11.
Adams P, Brown D
. Actions of gamma-aminobutyric acid on sympathetic ganglion cells. J Physiol. 1975; 250(1):85-120.
PMC: 1348340.
DOI: 10.1113/jphysiol.1975.sp011044.
View
12.
Vega A, Cancino-Rodezno A, Valle-Leija P, Sanchez-Tafolla B, Elinos D, Cifuentes F
. Neurotrophin-dependent plasticity of neurotransmitter segregation in the rat superior cervical ganglion in vivo. Dev Neurobiol. 2015; 76(8):832-46.
DOI: 10.1002/dneu.22362.
View
13.
SMITH D
. Reduced capabilities of synaptic transmission in aged rats. Exp Neurol. 1979; 66(3):650-66.
DOI: 10.1016/0014-4886(79)90210-3.
View
14.
Fortin G, Ducrot C, Giguere N, Kouwenhoven W, Bourque M, Pacelli C
. Segregation of dopamine and glutamate release sites in dopamine neuron axons: regulation by striatal target cells. FASEB J. 2018; 33(1):400-417.
DOI: 10.1096/fj.201800713RR.
View
15.
Agnati L, Guidolin D, Cervetto C, Maura G, Marcoli M
. Brain Structure and Function: Insights from Chemical Neuroanatomy. Life (Basel). 2023; 13(4).
PMC: 10142941.
DOI: 10.3390/life13040940.
View
16.
Wang D, Kriegstein A
. Defining the role of GABA in cortical development. J Physiol. 2009; 587(Pt 9):1873-9.
PMC: 2689328.
DOI: 10.1113/jphysiol.2008.167635.
View
17.
Sulzer D, Rayport S
. Dale's principle and glutamate corelease from ventral midbrain dopamine neurons. Amino Acids. 2000; 19(1):45-52.
DOI: 10.1007/s007260070032.
View
18.
Naderipoor P, Amani M, Abedi A, Sakhaie N, Sadegzadeh F, Saadati H
. Alterations in the behavior, cognitive function, and BDNF level in adult male rats following neonatal blockade of GABA-A receptors. Brain Res Bull. 2021; 169:35-42.
DOI: 10.1016/j.brainresbull.2021.01.006.
View
19.
Martinez L, Cifuentes F, Morales M
. Ganglionic Long-Term Potentiation in Prehypertensive and Hypertensive Stages of Spontaneously Hypertensive Rats Depends on GABA Modulation. Neural Plast. 2019; 2019:7437894.
PMC: 6815531.
DOI: 10.1155/2019/7437894.
View
20.
Wolff J, Joo F, Kasa P, Toldi J, Balcar V
. Presence of neurons with GABA-like immunoreactivity in the superior cervical ganglion of the rat. Neurosci Lett. 1986; 71(2):157-62.
DOI: 10.1016/0304-3940(86)90551-3.
View