6.
Santibanez M, Fuentealba M
. Experimental determination of Gd dose enhancement and Gd dose sparing by Ir brachytherapy source with Gafchromic EBT3 dosimeter. Appl Radiat Isot. 2021; 175:109787.
DOI: 10.1016/j.apradiso.2021.109787.
View
7.
Prezado Y, Fois G, Le Duc G, Bravin A
. Gadolinium dose enhancement studies in microbeam radiation therapy. Med Phys. 2009; 36(8):3568-74.
DOI: 10.1118/1.3166186.
View
8.
Albertini B, Mathieu V, Iraci N, Van Woensel M, Schoubben A, Donnadio A
. Tumor Targeting by Peptide-Decorated Gold Nanoparticles. Mol Pharm. 2019; 16(6):2430-2444.
DOI: 10.1021/acs.molpharmaceut.9b00047.
View
9.
Mesbahi A, Rajabpour S, Smilowitz H, Hainfeld J
. Accelerated brachytherapy with the Xoft electronic source used in association with iodine, gold, bismuth, gadolinium, and hafnium nano-radioenhancers. Brachytherapy. 2022; 21(6):968-978.
DOI: 10.1016/j.brachy.2022.06.008.
View
10.
Dickler A, Dowlatshahi K
. Xoft Axxent electronic brachytherapy. Expert Rev Med Devices. 2008; 6(1):27-31.
DOI: 10.1586/17434440.6.1.27.
View
11.
Penninckx S, Heuskin A, Michiels C, Lucas S
. Gold Nanoparticles as a Potent Radiosensitizer: A Transdisciplinary Approach from Physics to Patient. Cancers (Basel). 2020; 12(8).
PMC: 7464732.
DOI: 10.3390/cancers12082021.
View
12.
Hainfeld J, OConnor M, Dilmanian F, Slatkin D, Adams D, Smilowitz H
. Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. Br J Radiol. 2010; 84(1002):526-33.
PMC: 3473629.
DOI: 10.1259/bjr/42612922.
View
13.
Zygmanski P, Liu B, Tsiamas P, Cifter F, Petersheim M, Hesser J
. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles. Phys Med Biol. 2013; 58(22):7961-77.
DOI: 10.1088/0031-9155/58/22/7961.
View
14.
Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R
. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine. 2011; 6:2859-64.
PMC: 3224712.
DOI: 10.2147/IJN.S25446.
View
15.
Liu J, Peng Q
. Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Acta Biomater. 2017; 55:13-27.
DOI: 10.1016/j.actbio.2017.03.055.
View
16.
Zhang D, Feygelman V, Moros E, Latifi K, Zhang G
. Monte Carlo study of radiation dose enhancement by gadolinium in megavoltage and high dose rate radiotherapy. PLoS One. 2014; 9(10):e109389.
PMC: 4183586.
DOI: 10.1371/journal.pone.0109389.
View
17.
Bort G, Lux F, Dufort S, Cremillieux Y, Verry C, Tillement O
. EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: From animal to human with theranostic AGuIX nanoparticles. Theranostics. 2020; 10(3):1319-1331.
PMC: 6956799.
DOI: 10.7150/thno.37543.
View
18.
Kakade N, Das A, Kumar R, Sharma S, Chadha R, Maiti N
. Application of unlaminated EBT3 film dosimeter for quantification of dose enhancement using silver nanoparticle-embedded alginate film. Biomed Phys Eng Express. 2022; 8(3).
DOI: 10.1088/2057-1976/ac60c5.
View
19.
Cifter G, Chin J, Cifter F, Altundal Y, Sinha N, Sajo E
. Targeted radiotherapy enhancement during electronic brachytherapy of accelerated partial breast irradiation (APBI) using controlled release of gold nanoparticles. Phys Med. 2015; 31(8):1070-1074.
PMC: 4946579.
DOI: 10.1016/j.ejmp.2015.07.138.
View
20.
Santibanez M, Fuentealba M, Torres F, Vargas A
. Experimental determination of the gadolinium dose enhancement in phantom irradiated with low energy X-ray sources by a spectrophotometer -Gafchromic-EBT3 dosimetry system. Appl Radiat Isot. 2019; 154:108857.
DOI: 10.1016/j.apradiso.2019.108857.
View