6.
Adelman J, Tokarz R, Euken A, Field E, Russell M, Smith R
. Relative Influence of Land Use, Mosquito Abundance, and Bird Communities in Defining West Nile Virus Infection Rates in Mosquito Populations. Insects. 2022; 13(9).
PMC: 9502061.
DOI: 10.3390/insects13090758.
View
7.
Dunphy B, Kovach K, Gehrke E, Field E, Rowley W, Bartholomay L
. Long-term surveillance defines spatial and temporal patterns implicating Culex tarsalis as the primary vector of West Nile virus. Sci Rep. 2019; 9(1):6637.
PMC: 6488619.
DOI: 10.1038/s41598-019-43246-y.
View
8.
Micieli M, Glaser R
. Somatic Wolbachia (Rickettsiales: Rickettsiaceae) levels in Culex quinquefasciatus and Culex pipiens (Diptera: Culicidae) and resistance to West Nile virus infection. J Med Entomol. 2014; 51(1):189-99.
DOI: 10.1603/me13152.
View
9.
Onyango G, Bialosuknia M, Payne F, Mathias N, Ciota T, Kramer D
. Increase in temperature enriches heat tolerant taxa in Aedes aegypti midguts. Sci Rep. 2020; 10(1):19135.
PMC: 7644690.
DOI: 10.1038/s41598-020-76188-x.
View
10.
Costanzo K, Schelble S, Jerz K, Keenan M
. The effect of photoperiod on life history and blood-feeding activity in Aedes albopictus and Aedes aegypti (Diptera: Culicidae). J Vector Ecol. 2015; 40(1):164-71.
DOI: 10.1111/jvec.12146.
View
11.
Pietri J, DeBruhl H, Sullivan W
. The rich somatic life of Wolbachia. Microbiologyopen. 2016; 5(6):923-936.
PMC: 5221451.
DOI: 10.1002/mbo3.390.
View
12.
Lambrechts L, Paaijmans K, Fansiri T, Carrington L, Kramer L, Thomas M
. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci U S A. 2011; 108(18):7460-5.
PMC: 3088608.
DOI: 10.1073/pnas.1101377108.
View
13.
Briet O, Vounatsou P, Amerasinghe P
. Malaria seasonality and rainfall seasonality in Sri Lanka are correlated in space. Geospat Health. 2008; 2(2):183-90.
DOI: 10.4081/gh.2008.242.
View
14.
Olson K, Blair C
. Arbovirus-mosquito interactions: RNAi pathway. Curr Opin Virol. 2015; 15:119-26.
PMC: 4765169.
DOI: 10.1016/j.coviro.2015.10.001.
View
15.
Feng M, Fei S, Xia J, Labropoulou V, Swevers L, Sun J
. Antimicrobial Peptides as Potential Antiviral Factors in Insect Antiviral Immune Response. Front Immunol. 2020; 11:2030.
PMC: 7492552.
DOI: 10.3389/fimmu.2020.02030.
View
16.
Olayemi I, Ande A, Ayanwale A, Mohammed A, Bello I, Idris B
. Seasonal trends in epidemiological and entomological profiles of malaria transmission in North Central Nigeria. Pak J Biol Sci. 2011; 14(4):293-9.
DOI: 10.3923/pjbs.2011.293.299.
View
17.
Cheng G, Liu Y, Wang P, Xiao X
. Mosquito Defense Strategies against Viral Infection. Trends Parasitol. 2015; 32(3):177-186.
PMC: 4767563.
DOI: 10.1016/j.pt.2015.09.009.
View
18.
Alto B, Wiggins K, Eastmond B, Ortiz S, Zirbel K, Lounibos L
. Diurnal Temperature Range and Chikungunya Virus Infection in Invasive Mosquito Vectors. J Med Entomol. 2017; 55(1):217-224.
DOI: 10.1093/jme/tjx182.
View
19.
Lau M, Ross P, Endersby-Harshman N, Hoffmann A
. Impacts of Low Temperatures on Wolbachia (Rickettsiales: Rickettsiaceae)-Infected Aedes aegypti (Diptera: Culicidae). J Med Entomol. 2020; 57(5):1567-1574.
PMC: 7566743.
DOI: 10.1093/jme/tjaa074.
View
20.
Brackney D, LaReau J, Smith R
. Frequency matters: How successive feeding episodes by blood-feeding insect vectors influences disease transmission. PLoS Pathog. 2021; 17(6):e1009590.
PMC: 8191993.
DOI: 10.1371/journal.ppat.1009590.
View